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31B Notes 

Sudesh Kalyanswamy 

Exponential Functions (7.1) 

The following theorem pretty much summarizes section 7.1. 

Theorem 1.1. Rules for exponentials: 

(1) Exponential Rules (Algebra): 

x y x+y(a) a · a = a 
a x−y(b) 
x 
= a ay 

x)y xy(c) (a = a 

(2) Derivatives of Exponentials: 

x x(a) f(x) = e =⇒ f 0(x) = e 
x(b) f(x) = a =⇒ f 0(x) = ax ln(a) 

Example 1.2. Simplify 102(2−2 + 5−2) 

Solution. We want to use 1(a) above, but we can’t since the bases aren’t the same. So first write (10)2 = 
(2 · 5)2 = 22 · 52 . Now 

102(2−2 + 5−2) = 22 · 52(2−2 + 5−2) 

= · 52 + 2222 · 2−2 · 52 · 5−2 

22+(−2) · 52+(−2)= · 52 + 22 (by 1(a) above) 

= 52 + 22 

= 29 

Example 1.3. Simplify (9−1/6)3 . 

Solution. To simplify this, use 1(c) above: 

1 1 
= 93·−1/6 = 9−1/2(9−1/6)3 = = 

91/2 3 

Example 1.4. Solve 2x+1 = 4. 

Solution. You know the answer should be x = 1. But we want to try and get this with a method that works 
more generally. To solve this, we want a common base on both sides. In this example, it will be 2, as 4 = 22 . 
So we want to solve 2x+1 = 22 . Since we now have the desired common base, we set the exponents equal 
(this works because exponentials are 1-1 functions). So x + 1 = 2, which means x = 1 . 

Example 1.5. Solve 5x = 251−x . 
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Solution. To solve this, we want to get the same base, so write 25 = 52 . Therefore 

= 52(1−x)5x = 251−x =⇒ 5x = (52)1−x =⇒ 5x . 

Now set the exponents equal: 

2 
x = 2(1 − x) =⇒ x = 2 − 2x =⇒ 3x = 2 =⇒ x = . 

3 

sin(x)Example 1.6. What is the tangent line to f(x) = e at x = 0? 

sin(0) 0Solution. First, we want the y-coordinate: f(0) = e = e = 1. Next, we need the derivative for the 
slope: 

sin(x)f 0(x) = e · cos(x) 
sin(0) 0by the chain rule. Plugging in x = 0: f 0(0) = e · cos(0) = e · 1 = 1. Therefore, the tangent line is 

y − 1 = 1(x − 0) . 

−2x+3Example 1.7. Find the derivative of f(x) = xe . 

Solution. We need product rule here (and chain rule too): 

−2x+3)0 −2x+3 −2x+3 −2x+3f 0(x) = x · (e + e · (x)0 = x · e · (−2) + e . 

x+1 eExample 1.8. Find the derivative of f(x) = (2x+1)3 . 

Solution. Quotient rule and chain rule: 

x+1 − ex+1(2x + 1)3 · e · 3(2x + 1)2 · 2 
f 0(x) = . 

(2x + 1)6 

2xExample 1.9. Show f(x) = x + e is always increasing. 

2x 2x 2xSolution. Observe that f 0(x) = 1 + 2e . Since e > 0 (as e to any power is > 0), 2e > 0, and finally if 
2xwe add 1 it is more positive, so 1 + 2e > 0. Since f 0(x) > 0 for all x, f(x) is always increasing. R 

2x+3dx.Example 1.10. Evaluate e

Solution. If you’re comfortable just adjusting for constants without doing u-sub, fine. If not, do u = 2x + 3, 
1 so du = 2dx. We don’t have the 2, so move it over to get du = dx. This gives 2 Z Z 

1 1 1u 2x+32x+3dx =e e udu = e + C = e + C . 
2 2 2 R 
sec(x)dx.Example 1.11. Evaluate sec(x) tan(x)e 

Solution. This is another u-sub, this time with u = sec(x), and du = sec(x) tan(x). So Z Z 
sec(x) u sec(x)sec(x) tan(x)e = e udu = e + C = e + C . 

R √ 
ex2Example 1.12. Evaluate x dx. 

Solution. The trick here is to notice that 
√ 2 x 2 

x 2ex2 = (e )1/2 = e . R 
xSo the integral is just xe 
2/2dx. To integrate, let u = x2/2, du = xdx, and again the integral becomes justR 2 x /2ueudu = e + C = e + C . 
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2 Inverse Functions and their derivatives (7.2) 

This section was all about inverse functions. 

Definition 2.1 (Inverse Function). If f(x) is a function, then another function g(x) is the inverse of f if 
f(g(x)) = g(f(x)) = x. 

x+5Example 2.2. Show directly from the definition that f(x) = 3x − 5 has inverse g(x) = .3 

Solution. We need to compute both f(g(x)) and g(f(x)). Just evaluate: � � � � 
x + 5 x + 5 

f(g(x)) = f = 3 − 5 = x + 5 − 5 = x,
3 3 

and 
(3x − 5) + 5 3x 

g(f(x)) = g(3x − 5) = = = x. 
3 3 

Therefore g is the inverse of f . 
√ 

Example 2.3. If f(x) = x2 − 1 for x ≤ 0, show from the definition that g(x) = − x + 1 is the inverse of 
f(x). 

Solution. Again, we need f(g(x)) and g(f(x)): 
√ √ 

f(g(x)) = f(− x + 1) = (− x + 1)2 − 1 = x + 1 − 1 = x, 

and p √ 
g(f(x)) = g(x 2 − 1) = − (x2 − 1) + 1 = − x2 = −|x|. 

Now since the domain of f(x) was x ≤ 0 and |x| = −x on this region, we get that −|x| = −(−x) = x, which 
is what we needed. Therefore g is the inverse of f . 

Functions need to be 1-1 to be invertible: 

Definition 2.4. A function f(x) is one-to-one if f(a) = f(b) =⇒ a = b 

Remark. Graphically, this is saying the graph of y = f(x) passes the horizontal line test. This means that 
every horizontal line crosses the graph of y = f(x) at most once. 

Example 2.5. Show that the function f(x) = 3x + 1 is 1-1 algebraically. 

Solution. We want to show that if f(a) = f(b), then a = b. If f(a) = f(b), then 3a +1 = 3b + 1. Subtracting 
1 gives 3a = 3b, or a = b, which is what we needed. Therefore f(x) is 1-1. 

Remark. You could also have seen this clearly from the graph, since it is just a line, and so it will pass the 
horizontal line test. 

xExample 2.6. Show that the function f(x) = is 1-1 algebraically. x+1 

Solution. Again, start with f(a) = f(b): 

a b 
f(a) = f(b) =⇒ = 

a + 1 b + 1 
=⇒ a(b + 1) = b(a + 1) (cross multiply) 

=⇒ ab + a = ab + b 

=⇒ a = b. 

Therefore f(x) is 1-1. 

The last key point for this part of the chapter: 

Theorem 2.7. If a continuous function is always increasing or always decreasing, then it is 1-1. 
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2xExample 2.8. Show that f(x) = x + e is 1-1. 

Solution. Your first guess might be to try the definition: f(a) = f(b) =⇒ a = b. You quickly find that it 
is very difficult to get to a = b. So you try something else. In this case, looking at Example 1.9, we know 
f(x) is always increasing. Therefore f(x) is 1-1. 

So to summarize: 

Method 2.9. To show a function f(x) is invertible, you can: 

(1) Find the inverse directly: you do this by switching x and y and solving for y if possible. 

(2) Show f(x) is 1-1 by either: 

(a) Graphing it and showing it passes the horizontal line test 

(b) Using the definition: f(a) = f(b) =⇒ a = b 

(c) Show it is always increasing or always decreasing (and you should say it is continuous). 

Finally, we need to be able to differentiate inverse functions: 

Theorem 2.10 (Derivative of Inverses). Suppose g(x) is the inverse of f(x). If x = b is in the domain of 
g(x) (hence, in the range of f(x)), then 

g 0(b) = 
1 

. 
f 0(g(b)) 

The theorem really looks more complicated than it should be. Here’s going to be the general approach: 

Method 2.11 (Derivative of Inverses). If you want the derivative of g(x), where g(x) = f−1(x): 

(1) Find f 0(x) first. If a point is given, do step 2. If a point is not given, go to step 3. 

(2) Point given: 

(a) If a point x = b is given: Find f−1(b) by solving the equation f(x) = b. 

(b) Plug the value from (a) into f 0 . 

(c) Take the reciprocal. 

(3) Point not given: 

(a) Find f−1(x). 

(b) Plug the function from (a) into f 0 . 

(c) Take the reciprocal. 

x d dExample 2.12. If f(x) = 4 

3 
, find f−1(x) , the tangent line to f−1(x) at x = 16, and f−1(x)dx dx 

x=16 
using the previous theorem. 

3xSolution. In the formula we need f 0 , so f 0(x) = 
2 
. Notice that you don’t plug in the given point into f 0 .4 

You need to first figure out f−1 of your point, in this case, f−1(16). You do this by setting f(x) = 16 and 
seeing which x gave you 16 as the output: 

3x 3f(x) = 16 =⇒ = 16 =⇒ x = 64 =⇒ x = 4. 
4 

So x = 4 is what we plug into f 0(x) to get 

3 · 42 

f 0(4) = = 12. 
4 

So 
d 1 
f−1(x) = . 

12dx x=16 
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For the tangent line, we just found the slope. The point is (16, f−1(16)) = (16, 4), so the line is 

1 
y − 4 = (x − 16) . 

12 

Finally, to find the derivative of the inverse, use step 3 in the method outlined above. We know we need 
f−1(x). Switch x and y and solve for y: 

3y 
x = =⇒ y = (4x)1/3 . 

4 

)23((4x)1/3Now plug this into f 0 to get f 0(f−1(x)) = . Finally, take the reciprocal to get4 

d 4 
f−1(x) = . 

dx 3(4x)2/3 

tan(x) dExample 2.13. If f(x) = e , −π/2 < x < π/2, find f−1(x) √ .dx 3x=e 
√ 

tan(x)Solution. Again, first find f 0(x): f 0(x) = sec2(x)e . Next, we need f−1(e 3): 
√ √ 
3 tan(x)e = e =⇒ 3 = tan(x) =⇒ x = π/3. 

√ 
tan(π/3) 3Since f 0(π/3) = sec2(π/3)e = 4e , we get 

d 1 
f−1(x) √ .√ = 

3 3dx x=e 4e 

Logarithms and their derivatives (7.3) 

Here’s the main part of the section: 

Theorem 3.1. Rules for logarithms: 

(1) Algebra: 

(a) log (xy) = log (x) + log (y)a a a 

(b) log (x/y) = log (x) − log (y)a a a 

(c) log (xy) = y log (x)a a 

(2) Calculus rules: 

1 1(a) If f(x) = log (x), then f 0(x) = · .a ln(a) xR 
1(b) If f(x) = , then f(x)dx = ln |x| + C. x 

Example 3.2. What is log2(1/4)? 

1Solution. Just think of log as an exponent: If x = log2(1/4), then 2x = 4 = 2
−2 , so x = −2 . � � 

2 xExample 3.3. If log (x) = 3 and log (y) = −1, find log .3a a a y

Solution. Log rules: � 
2 � 

x 
log = log (x 2) − log (y 3) = 2 log (x) − 3 log (y) = 2(3) − 3(−1) = 9 .a a a a a y3 

2x+3Example 3.4. Solve the equation e = 5. 
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ln(u) xSolution. The point is ln(eu) = u and e = u as e and ln(x) are inverses. So in this case, to isolate x, 
take logs of both sides: 

ln(e 2x+3) = ln(5) =⇒ 2x + 3 = ln(5). 

ln(5) − 3 
Therefore x = . 

2 

2 ln(x)+3Example 3.5. Solve e = 5. 

ln(u)Solution. Notice you can’t use the e = u relation yet because of the 2 and 3 in the exponent. But 
2 ln(x)+3 2 ln(x) 3recall that e = e · e . Also, by log rules, 2 ln(x) = ln(x2). Putting these together, the equation 

becomes r 
2 5 5ln(x ) 3 2 e · e = 5 =⇒ x = =⇒ x = ± . 

e3 e3 r 
5 

However, we can’t have x < 0 since the domain of ln(x) is x > 0. Hence, x = . 
e3 

Example 3.6. Find the equation of the tangent line to f(x) = ln(x3 + 1) at x = 0. 

1 2Solution. First, we note that f 0(x) = · 3x by the chain rule, so f 0(0) = 0. Also, f(0) = ln(1) = 0. x3 +1 

Therefore the line is y − 0 = 0(x − 0), or y = 0 . � � 
(x+1) sin(x)Example 3.7. Find the derivative of y = ln . ex+1 

Solution. Before using chain rule, simplify the expression using log rules: � � 
(x + 1) sin(x)

ln = ln((x + 1) sin(x)) − ln(e x + 1) 
ex + 1 

= ln(x + 1) + ln(sin(x)) − ln(e x + 1). 

So y = ln(x + 1) + ln(sin(x)) − ln(ex + 1), so when we take the derivative, we get 

1 1 10 x y = + · cos(x) − · e . 
x + 1 sin(x) ex + 1 R 

dxExample 3.8. Evaluate 3x+5 . 

Solution. You can probably jump to the answer, but in case you have trouble thinking about adjusting for 
1constants, do a u-sub: u = 3x + 5, du = 3dx, so dx = du. The integral then becomes 3 Z 

1 du 1 1 
= ln |u| + C = ln |3x + 5| + C . 

3 u 3 3 R 
dxExample 3.9. Evaluate (2x−1) ln(4x−2) . 

1 1 1Solution. This is another u-sub: u = ln(4x − 2), du = · 4dx. First, write this as du = dx. Next,4x−2 4 4x−2 
you notice that in the integral, you only have 2x − 1, not 4x − 2, so if you multiply both sides by 2, you get 
1 1du = dx. So the integral is2 2x−1 Z 

1 du 1 1 
= ln |u| + C = ln |4x − 2| + C . 

2 u 2 2 

Example 3.10. Integrate tan(x). 
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Rsin(x) sin(x)Solution. Write tan(x) = dx. Let u = cos(x), du = − sin(x)dx, so −du = sin(x)dx.cos(x) , so we want cos(x) 
We have Z 

du − = − ln |u| + C = − ln | cos(x)| + C . 
u 

Logarthmic Differentiation: We use log differentiation in two main cases: when there are x’s in the 
base and the exponent of a function, or when taking logs and simplifying would make the derivative easier, 
as in the case of 

2 √ 
xe x + 1 · 2x 

y = √ . 
sec2(x) sin2(x) 4 x2 + 1 

= (2x + 1)sin(x)Example 3.11. Find the derivative of y . 

Solution. We need to use log differentiation because we have x’s in the base and the exponent. So take logs 
of both sides: 

ln(y) = ln((2x + 1)sin(x)) = sin(x) ln(2x + 1). 

Taking derivatives, and remembering implicit differentiation on the left: 

1 · y 0 = sin(x) · 2 
+ ln(2x + 1) cos(x), 

y 2x + 1 

so � � � � 

y 0 = y sin(x) · 2 
+ ln(2x + 1) cos(x) = (2x + 1)sin(x) sin(x) · 2 

+ ln(2x + 1) cos(x) . 
2x + 1 2x + 1 

xRemark. You CANNOT use the a 7→ ax ln(a) rule here; this only works for a a positive constant. Make 
sure you remember this. 

f(x)Example 3.12. If f(x) is a differentiable function, find the derivative of x . 

Solution. Again, write y = xf(x) and take logs: 

ln(y) = ln(x f (x)) = f(x) ln(x). 

Taking derivatives: 
1 0 f(x) 
y = + ln(x)f 0(x), 

y x 
so � � � � 

0 f (x)y = y
f(x) 

+ ln(x)f 0(x) = x
f(x) 

+ ln(x)f 0(x) . 
x x 

(x+1) sin(x)Example 3.13. Find the derivative of y = . ex+1 

Solution. Now, you could differentiate this using quotient rule, and then product rule on top, and so on. 
The alternative would be to realize you have a bunch of products and quotients, and logs help you break 
these up. So take ln of both sides: � � 

(x + 1) sin(x)
ln(y) = ln . 

ex + 1 
0We took the derivative of the right side in example 3.7. The left will become 1 · y , so altogther we gety 

1 1 1 10 x · y = + · cos(x) − · e , 
y x + 1 sin(x) ex + 1 

so � � � � 
1 1 1 (x + 1) sin(x) 1 1 10 x x y = y + · cos(x) − · e = + · cos(x) − · e . 

x + 1 sin(x) ex + 1 ex + 1 x + 1 sin(x) ex + 1 

7 
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4 Exponential Growth and Decay (7.4) 

Summary 4.1. (1) Exponential Growth: 

(a) Differential Equation: y0 = ky 
kt (b) Equation: y = y0e 

ln(2)(c) Doubling time: k 

(2) Exponential Decay 

0(a) Differential Equation: y = −ky 
−kt (b) Equation: y = y0e 

ln(2)(c) Half-life: k 

Remark. Notice that both the half-life and the doubling time are the same. Also note that all the k’s you 
see in the summary are assumed to be positive. 

Example 4.2. At the beginning of an experiment, there are 100 bacteria. After 2 hours, there are 300 
bacteria. If the bacteria follow and exponential growth pattern, find: 

(a) The number of bacteria N(t) after t hours. 

(b) The doubling time for the model. 

(c) The differential equation which models this growth pattern. 

(d) The amount of time it takes for the number of bacteria to reach 700. 

(e) The number of bacteria after 8 hours. 

Solution. (a) We know N(t) = N0e
kt (see 1(a) of the summary above). Since there are 100 bacteria at the 

start, N0 = 100, so all we need is k. To find this, we will use the only other thing we know, which is 
N(2) = 300: 

k·2 2k300 = 100e =⇒ 3 = e 

=⇒ ln(3) = 2k (take ln of both sides) 

ln(3) 
=⇒ k = . 

2 

ln(3) 
2Therefore, N(t) = 100e t . 

(b) The doubling time is ln(2)/k, so it is 

ln(2) 2 ln(2) 
= hours . 

ln(3)/2 ln(3) 

ln(3)
(c) The differential equation is N 0(t) = kN(t) since this is exponential growth, so N 0(t) = N(t) . 

2 

(d) We want to find when N(t) = 700: 

ln(3) ln(3) 

700 = 100e 2 t =⇒ 7 = e 2 t 

ln(3) 
=⇒ ln(7) = t (take ln of both sides)

2 

2 ln(7) 
=⇒ t = hours . 

ln(3) 

8 
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(3) The present value of P dollars to be received at time t is Pe−rt . This is the amount of money 
you would need to invest today to get P dollars at time t (assuming interest rate of r, compounded 
continuously). 

(4) The present value for income stream R(t) dollars per year continuous for T years is Z T 

R(t)e −rtdt. 
0 

Remark. Notice that in (2) above, when the principal is compounded continuously, it behaves like the 
exponential functions you met in 7.4. So, for example, the doubling time is still ln(2)/r, which you should 
be able to get anyway by setting P (t) = 2P0. 

Example 5.2. Suppose Bill deposits $100 into an account which pays 6% interest. What’s the balance in 
the account after 5 years if the interest is compounded: 

(a) Twice a year 

(b) Continuously � �2t 
Solution. (a) By (1) above, we know P (t) = 100 1 + .06 since M = 2. Therefore, in 5 years, the balance 2 

will be 
P (5) = 100(1.03)10 dollars . 

.06t(b) If it is compounded continuously, the model is P (t) = 100e , so in 5 years, the balance will be 

P (5) = 100e .06·5 dollars . 

Example 5.3. What is the present value of $1000 to be paid 5 years in the future if the interest rate is 8%? 

Solution. By (3), it is Pe−rt , so 1000e −.08·5 dollars . 

Example 5.4. If a principal amount of 100 dollars is compounded continuously at a given interest rate r, 
it will be worth 200 dollars in 8 years. Find the interest rate. 

Solution. There are two ways to do this problem: 

rt (1) We know P (t) = P0e , that P0 = 100, and that P (8) = 200. So 

ln(2)r·8 8r200 = 100e =⇒ 2 = e =⇒ ln(2) = 8r =⇒ r = . 
8 

Hence, the interest rate is � � 
ln(2)

100 · % . 
8 

(2) The second approach would be to realize that 8 is just the doubling time (i.e. the time it takes the 
intial investment to double in value). Even though it is an idea from 7.4, it still applies to this situation. � � 

ln(2) ln(2)Hence r = 8 , and so the interest rate is 100 · 8 %, which is what we found above. 

Other Exponential Models (7.6) 
0Summary 6.1. (1) The general solution for the differential equation y = k(y − b) is y = b + Cekt . 

(2) Newton’s Law of Cooling: If k is the cooling constant, T0 the ambient temperature, T (t) the temperature 
of the object, then T 0(t) = −k(T (t) − T0). 

10 
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(3) Free-fall with air resistance: If v(t) is the velocity of the object, m the mass, k the air resistance 
constant, g acceleration due to gravity, then � �k mg 

v 0(t) = − v(t) + . 
m k � � 

(4) Continuous annuity: P 0(t) = r P (t) − N , where P (t) is the balance in the annuity, r interest rate, r 
N the withdrawal rate. 

Remark. For (2)-(4) above, you can use (1) to get the general solution. 

Example 6.2. A hard-boiled egg at 98◦ Celsius is put into a sink of 18◦ water. After 5 minutes, the egg’s 
temperature is 38◦ . 

(a) Determine the temperature T (t) of the egg at time t minutes after it is put into the sink. 

(b) How long will it take the egg’s temperature to reach 20◦? 

Solution. (a) The differential equation for this model is T 0(t) = −k(T (t) − 18), and the general solution is 
T (t) = 18 + Ce−kt . We need both C and k. We know the initial temperature T (0) = 98, so 

T (0) = 18 + Ce0 = 98 =⇒ C = 80. 

To get k, we use the fact that T (5) = 38: 

1 ln(4)−k·5 −5k38 = 18 + 80e =⇒ e = =⇒ −5k = ln(1/4) = − ln(4) =⇒ k = . 
4 5 

So putting it all together, we get 
ln(4)− t5T (t) = 18 + 80e . 

(b) We want to know when T (t) = 20, so solve: 

ln(4) ln(4)− t − t5 ⇒ 
ln(4) 

20 = 18 + 80e = 2 = 80e 5 

1− t5=⇒ e = 
40 

ln(4) 
=⇒ − t = ln(1/40) = − ln(40)

5 
5 ln(40) 

=⇒ t = . 
ln(4) 

5 ln(40) 
So the answer is minutes . 

ln(4) 

Example 6.3. Suppose you have a cup of coffee with cooling constant k = .09 min−1 . It is placed in a room 
of temperature 20◦C. 

(a) At what rate is the temperature changing when the temperature of the coffee is 80◦C. 

(b) If the coffee is served at 90◦C, how long will it take to reach 30◦C. 

(c) At what time will the temperature reach 15◦ . 

Solution. (a) The differential equation is T 0(t) = −k(T (t) − T0) = −.09(T (t) − 20). So if T (t) = 80, then 

T 0(t) = −.09(80 − 20) = −.09 · 60 ◦C/min . 

11 
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(b) The general solution is T (t) = 20 + Ce−kt = 20 + Ce−.09t . First, since T (0) = 90, we can solve for C: 

90 = 20 + Ce−.09·0 =⇒ 90 = 20 + C =⇒ C = 70, 

−.09tso T (t) = 20 + 70e . We want to know when T (t) = 30, so 

1 ln(7)−.09t −.09t30 = 20 + 70e =⇒ = e =⇒ −.09t = ln(1/7) = − ln(7) =⇒ t = minutes . 
7 .09 

(c) In theory, you would set T (t) = 15, so 

5−.09t −.09t15 = 20 + 70e =⇒ − = e . 
70 

However, you cannot take logs because you cannot have the log of a negative number. That tells us 
there is no t which works. We should have seen this immediately because the temperature should never 
go below the temperature of the ambient space, which in this case is 20. 

Example 6.4. Suppose that a skydiver jumps out of an airplane. If the terminal velocity is −98 m/s, find 
the velocity of the skydiver after 15 seconds. Assume k = 8 kg/s. 

+ Ce−(k/m)tSolution. Here, v(t) = − mg . We don’t know m yet. However, terminal velocity is −mg/k, sok 

m · 9.8 98 · 8 −98 = − =⇒ m = = 80. 
8 9.8 

+ Ce−(8/80)tSo the skydiver’s mass is 80 kg, and v(t) = − 80g . We also need C, but we know v(0) = 0, so8 

80g− + Ce0 = 0 =⇒ C = 10g = 10(9.8) = 98. 
8 

−t/10 −t/10Hence v(t) = −10g + 98e = −98 + 98e . After 15 seconds, the velocity is 

v(15) = −98 + 98e −15/10 m/s . 

Example 6.5. What is the minimum deposit P0 necessary that will allow an annuity to pay out 1000 
dollars/year indefinitely if it earns interest at a rate of 4%. 

N 1000Solution. We know P (t) = + Cert = + Ce.04t . The annuity will pay out indefinitely if C ≥ 0. To see r .04 
why, notice that if C < 0, then P (t) is decreasing, and so will eventually hit 0, which is not what we want. 
However, if C ≥ 0, then at worst P (t) is constant, which is ok. If the initial amount is P0, then 

1000 1000 
P0 = + C =⇒ C = P0 − . 

.04 .04 

1000 
Since we want C ≥ 0, this means P0 ≥ dollars . 

.04 

Example 6.6. A skydiver jumps out of an airplane with zero initial velocity. Before the parachute opens, 
the skydiver’s velocity satisfies v0(t) = −g − 2v(t), and after the parachute opens, the skydiver’s velocity 
satisfies v0(t) = −g − v. If the parachute opens 10 seconds after the initial jump, find the velocity 20 seconds 
after the initial jump. 

Solution. There are two separate velocity functions here, one before the parachute opens and one after, so� � 0 0 glet’s call them vb and va (for “before” and “after”). We know v = −g − 2v = − 1 vb + . This has general b b 2 2 
solution 

g 
+ Ce−(1/2)t vb(t) = − . 

2 
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Now, there is zero initial velocity, so vb(0) = 0, or 

g g− + C = 0 =⇒ C = . 
2 2 

Therefore 
g g −t/2 vb(t) = − + e . 
2 2 

0We’ve exhausted this function for now. Next, we know va satisfies v = −g − va = −(va + g), and this hasa 
−tgeneral solution va(t) = −g + ce . However, we cannot say va(0) = 0. In fact, here, the initial velocity for 

gva should be the velocity of skydiver the moment the parachute opened, which is vb(10) = − g + e−5 since2 2 
the parachute opened 10 seconds after the jump. Now we can solve for c, since va(0) = vb(10): 

g g g g−5 −5− + e = −g + c =⇒ c = + e . 
2 2 2 2 

So � � g g −5 −t va(t) = −g + + e e . 
2 2 

Finally, we want the velocity 20 seconds after the initial jump, which is 10 seconds after the parachute 
opened, so the final answer is � � 

−5 va(10) = −g + 
g 
+ 

g
e e −10 m/s . 

2 2 

L’Hopital’s Rule (7.7) 
0 ∞There are seven indetermine forms, but only three you need to know: 0 , ∞ , 0 · ∞. If you have a limit that 

produces one of these forms (and only one of these forms), you will eventually be using L’Hopital’s rule. It is 
extremely important to note that if it is not one of these three, then you will not be using L’Hopital’s rule. 

Summary 7.1. (1) Indeterminate Forms: 

f(x) 0 ∞(a) If limx→a is either a or form, and assuming g0(a) =6 0, then we can sayg(x) 0 ∞ 

f(x) f 0(x)
lim = lim , 
x→a g(x) x→a g0(x) 

which is L’Hopital’s rule. 

(b) If limx→a f(x)g(x) is a 0 · ∞ form, then you reduce to case (a) by “flipping” one of the terms. 
This amounts to writing 

f(x) g(x)
lim f(x)g(x) = lim or lim .1 1x→a x→a x→a 

g(x) f (x) 

g(x) f (x)(2) Growth of functions: We write f(x) << g(x) if limx→∞ = ∞ (equivalently limx→∞ = 0).f (x) g(x) 

Remark. First, in (1) above, a can be taken to be ∞. Second, when flipping one of the terms in the 0 · ∞ 
case, we generally avoid flipping logs. On the other hand, flipping exponentials is generally favorable. 

Example 7.2. Calculate limx→0
1−e x 

2 . x−x 

Solution. When we plug in 0 into the function, we get 0/0, so we can use L’Hopital’s rule immediately: 

x x 01 − e LH −e e 
lim = lim = − = −1 , 
x→0 x − x2 x→0 1 − 2x 1 − 2(0) 

where the LH just means we are applying L’Hopital at that step. 

13 
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ln(x)Example 7.3. Calculate limx→1 x3−1 

Solution. Again, we plug in our point (in this case x = 1) and find a 0/0 form, so L’Hopital’s rule yields: 

ln(x) LH 1/x 1 
lim = lim = . 
x→1 x3 − 1 x→1 3x2 3 

eExample 7.4. Calculate limx→∞ 
x 

x+ln(x) 

Solution. Since both the numerator and denominator approach ∞, this is an ∞/∞ limit. We can apply 
L’Hopital: 

x xe eLH
lim = lim . 
x→∞ x + ln(x) x→∞ 1 + 1 

x 
xNow e →∞ and 1 + 1 → 1 as x →∞, so the limit becomes ∞/1 = ∞ . x 

2ln(x +1)Example 7.5. Calculate limx→∞ √ . 
x+ x 

√ 
Solution. Now, this is an ∞/∞ form since ln(x2 + 1) and x + x both approach ∞ as x → ∞. So we can 
use L’Hopital: 

2x
ln(x2 + 1) LH x2+1lim √ = lim 1 . 

x→∞ x + x x→∞ 1 + √ 
2 x 

Now, we want to clean this up a bit, so let’s clear denominators: 
√2x 2x 
2 x(x2 + 1) x2+1 x2+1lim = lim · √1 1x→∞ 1 + √ x→∞ 1 + √ 2 x(x2 + 1) 

2 x 2 x √ 
4x x 

= lim √ 
x→∞ 2 x(x2 + 1) + (x2 + 1) 

3/24x 
= lim √ . 

x→∞ 2x5/2 + 2 x + x2 + 1 

Now this last limit is also ∞/∞, so you could do L’Hopital’s rule, in theory. But you learned in 31A to do 
limits like this by looking at dominant terms, which in this case gives 

3/24x 2 
= → 0 

2x5/2 x 

as x →∞. Therefore the limit is 0 . 
Example 7.6. Evaluate limx→0+ x2 ln(x). 

Solution. Since ln(x) → −∞, this is a 0 · ∞ form. As stated in the remark following the summary above, 
we generally do not flip the logs, so we will write 

ln(x)
lim x 2 ln(x) = lim .1 

x→0+ x→0 
2x

Now this is ∞/∞: 
3 2ln(x) LH 

1 1 x x xlim = lim = lim · − = lim − = 0 . 
x→0 1 x→0 − 2 x→0 x 2 x→0 22 3x x 

2 −x 2 xExample 7.7. Show limx→∞ x e = 0 and conclude x << e . 
−xSolution. Since e → 0 as x →∞, this is technically 0 · ∞. We usually flip exponentials, but thankfully it 

is a little easier here since e−x = 1 , so the limit is ex 

x2 
LH 2x LH 2 

lim = lim = lim = 0 . 
x→∞ ex x→∞ ex x→∞ ex 

The use of L’Hopital’s rule in both cases is justified by the fact that the new limits were ∞/∞. Since 
2 x 2 xlimx→∞ = 0, by definition, x << e . ex 

14 
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8 Integration by Parts (8.1) 

You use integration by parts to undo the product rule. The formula is Z Z 
udv = uv − vdu . 

The problem will always be determining what to make u and what to make dv. The phrase you can remember 
is LIATE: 

Logs Inverse trig Algebraic Trig Exponentials. 

This gives you a priority listing: logs get highest priority for the choice of u, then inverse trig functions, 
2then algebraic expressions (e.g. x, x , polynomials, etc.), then trig functions, and lastly exponentials. Let’s 

look at this in practice: R 
Example 8.1. Evaluate x cos(x)dx. 

Solution. So first, you recognize this as a by-parts problem because you don’t know the antiderivative 
immediately and there is no clear u-substitution to make. The product of functions is also a clue. So we 
have to decide on u and dv: x is an algebraic expression and cos(x) is trig, so x gets priority for u. So let 
u = x, dv = cos(x)dx. Then du = dx, and v = sin(x) (take the antiderivative of dv to get v): 

u = x dv = cos(x)dx, 

du = dx v = sin(x). 

Therefore, the formula says the integral is 

v v duZ u z }| { Z z }| { z}|{z}|{
uv − vdu = x sin(x) − sin(x) dx = x sin(x) + cos(x) + C . 

R 
Example 8.2. Evaluate xe2xdx. 

Solution. Again, the product of functions is a clue for by parts, as is the lack of a clear substitution choice. 
2xThis time, we have x, an algebraic expression, and e , an exponential, so x gets priority for u: 

u = x dv = e 2xdx, 

1 2xdu = dx v = e . 
2 

So 
v v Z u z }| { Z z }| { duz}|{z}|{ 1 1 2x xe 2xdx = x · e 2x − e dx . 
2 2 

2xSince the last integral is 1 e , we get an answer of4 Z 
1 1 2x2x −xe 2xdx = xe e + C . 
2 4 R 

Example 8.3. Evaluate x2e2xdx 

2x 2Solution. Here, x2 is algebraic, e is an exponential, so we will let u = x : 

2 u = x dv = e 2xdx, 

1 2xdu = 2xdx v = e . 
2 
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Therefore: Z Z 
2 2 2x −x e 2xdx =

1 
x e xe 2xdx,
2 

since the 2 and 1/2 cancel in the vdu integral. To do this new integral, we need by parts again. Thankfully 
we just did this integral in the previous example, so using that answer we get � � 

1 1 12 2x2x − 2x −x e xe e + C . 
2 2 4 

Remark. The point of this example was to point out we can do by parts as many times as we need to. R 2
Example 8.4. Evaluate x3 ln(x)dx.

1 

Solution. Having bounds doesn’t change anything. Here, x3 is algebraic, ln(x) is a logarithm, so ln(x) is our 
choice of u: 

u = ln(x) dv = x 3dx, 

du = 
1 
dx v = 

1 4 x . 
x 4 

Hence, Z 2 

x 3 ln(x)dx = 
1 
x 4 ln(x) 

2 
Z 2 

− 
1 4 x · 1 dx = 

1 
x 4 ln(x) 

2 
Z 2 

− 
1 
x 3dx = 

1 
x 4 ln(x) − 

1 4 x 
2 
. 

1 4 1 1 4 x 4 1 1 4 4 16 1 

Now evaluating the bounds, we get � � � � 
1 · 24 ln(2) − 

1 · 24 − 
1 · 14 ln(1) − 

1 · 14 = 4 ln(2) − 
15 

,
4 16 4 16 16 

since ln(1) = 0. 

Example 8.5. Evaluate 
R 
tan−1(x)dx. 

Solution. This is one of the tricks of by-parts integration: knowing to do it even with only one term in theR 
integrand. The trick is to write the integral as tan−1(x) ·1dx, so now we do have two terms. Since tan−1(x) 
is inverse trig and 1 is an algebraic expression, we will let u = tan−1(x): 

u = tan−1(x) dv = 1dx, 

1 
du = dx v = x,

1 + x2 

and so the integral becomes Z 
−1(x) − 

x 
x tan dx. 

1 + x2 

Now, to evaluate the new integral, we can do a u-sub, so (ignoring the previous u) we will let u = 1 + x2 , 
1du = 2xdx, so xdx = du. This means2 Z Z 

x 1 du 1 1 
dx = = ln |u| = ln |1 + x 2|. 

1 + x2 2 u 2 2 

Strictly speaking, we don’t need absolute values, but we can leave them in. Putting all of this together, the 
answer becomes 

1 
x tan−1(x) + ln |1 + x 2| + C . 

2 R 
Example 8.6. Evaluate x3 sin(x2)dx. 

16 



Solution. Your first thought for this integral would probably be to do by parts. However, if we were following 
3LIATE, we would need to let u = x (the algebraic expression), and so dv = sin(x2)dx. The problem is we 

can’t find v since we don’t know the antiderivative of sin(x2). That tells us that by parts is probably not 
the best way to go (at least at first). 

Once you determine this, your next thought might be u-sub. Indeed, this is one of those tricky u-subs. 
2 1 3We will let u = x , and du = 2xdx, so du = xdx. The problem is we have x , not just x. So write2 Z Z 

x 3 sin(x 2)dx = x · x 2 sin(x 2)dx. 

Now the xdx becomes 1 du, and the x2 sin(x2) becomes u sin(u). So we have transformed the integral as2 Z Z 
x 3 sin(x 2)dx =

1 
u sin(u)du. 

2 

For this new integral, we need by parts. Since u is algebraic and sin(u) is trig, we will let U = u (the capital 
U being because we have already used lower case u): 

U = u dv = sin(u)du, 

dU = du v = − cos(u). 

So we have Z � Z � 
1 1 1 

u sin(u)du = −u cos(u) − − cos(u)du = [−u cos(u) + sin(u)] + C. 
2 2 2 

2Lastly, substitute in u = x : 
1 � � 
−x 2 cos(x 2) + sin(x 2) + C . 

2 R 
Example 8.7. Evaluate ex cos(x)dx. 

Solution. This is the trickiest one of all. We have an exponential and a trig function, so just to stay consistent 
with LIATE we will let u = cos(x) (though, in reality, it doesn’t matter here): 

u = cos(x) dv = e xdx, 

xdu = − sin(x)dx v = e . 

So we have Z Z Z 
e x cos(x)dx = e x cos(x) − − sin(x)e xdx = e x cos(x) + e x sin(x)dx. 

xFor this new integral, we need by parts again. We will let u = sin(x) this time (note: if you make u = e 
this time, you will undo the work that you did to get to this point): 

u = sin(x) dv = e xdx, 

xdu = cos(x)dx v = e . 

So Z Z 
e x sin(x)dx = e x sin(x) − e x cos(x)dx. 

You should notice that this is the same integral we started with, so it may seem like we went in a circle, but 
we didn’t. What we have is Z Z 

e x cos(x)dx = e x cos(x) + e x sin(x) − e x cos(x)dx. (1) 

17 
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The integral is what we’re solving for, so treat it like a variable. If we move the integral on the right to the 
other side (by adding it to both sides), we get Z 

2 e x cos(x)dx = e x cos(x) + e x sin(x), 

so dividing by 2 gives: Z 
ex cos(x) + ex sin(x) 

e x cos(x)dx = . 
2 R 

Remark. If this last step bothers you, you could say: Let I = ex cos(x)dx. We will try and solve for I. 
Equation (1) becomes: 

ex cos(x) + ex sin(x)
I = e x cos(x) + e x sin(x) − I =⇒ 2I = e x cos(x) + e x sin(x) =⇒ I = ,

2 

which is the same as the answer we got. 

Trig Integals (8.2) 

The only thing you need to know from this section is how to integrate things like Z 
sinn(x) cosm(x)dx, 

where either m or n is odd. Just always remember the identity 

sin2(x) + cos 2(x) = 1 . 

Example 9.1. Integrate sin3(x) cos(x). 

Solution. In the case one of the powers happens to be 1, no extra work is necessary. Just do a u-sub: 
u = sin(x), du = cos(x)dx, so the integral Z Z 4u sin4(x)

sin3(x) cos(x)dx = u 3du = + C = + C . 
4 4 

Example 9.2. Integrate sin3(x) cos2(x). 

Solution. Now we can’t do a simply u-sub, since we have a cos2(x) and not just cos(x). The trick is to break 
up the sin3(x) (or, more generally, the trig function with an odd power): Z Z Z 

sin3(x) cos2(x)dx = sin(x) · sin2(x) · cos 2(x)dx = sin(x)(1 − cos 2(x)) cos2(x)dx, 

where for this last step we used the pythagorean identity above. Now we can do a u-sub with u = cos(x), 
du = − sin(x)dx, so −du = sin(x)dx. Thus, the integral becomes Z Z 3 5u u cos3(x) cos5(x)− (1 − u 2)u 2du = − u 2 − u 4du = − + + C = − + + C . 

3 5 3 5 

Example 9.3. Integrate sin5(x) cos6(x). 

Solution. Again, we break down the function with the odd power: sin5(x) = sin(x) · sin4(x) = sin(x) · 
(sin2(x))2 = sin(x) · (1 − cos2(x))2 . Therefore, Z Z 

sin5(x) cos6(x)dx = sin(x)(1 − cos 2(x))2 · cos 6(x)dx. 

18 
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Now do u = cos(x), du = − sin(x)dx, and again −du = sin(x)dx. This yields Z 
2)2− (1 − u u 6du. 

The least painful way to do this is just distribute: Z Z Z 7 9 11 
2 82)2 10du = −− (1 − u u 6du = − (1 − 2u + u 4)u 6du = − u 6 − 2u + u

u 
+
2u − 

u 
+ C. 

7 9 11 

Plugging in u = cos(x) back in gives 

11(x)cos7(x) 2 cos9(x) cos − + − + C . 
7 9 11 

Example 9.4. Integrate sin3(x) cos5(x). 

Solution. In this case, both powers are odd, so it doesn’t much matter which one you break down. In general, 
it is probably easier manipulate the lower odd degree: sin3(x) = sin(x) · sin2(x) = sin(x)(1 − cos2(x)). So we 
have Z 

sin(x)(1 − cos 2(x)) cos5(x)dx. 

After the u-sub we have done the previous two times with u = cos(x), we get Z Z 6 8u u cos6(x) cos8(x)− (1 − u 2)u 5du = − u 5 − u 7du = − + + C = − + + C . 
6 8 6 8 

10 Trigonometric Substitution (8.3) 
2Trig sub helps tackle integrals involving ax2 − b, ax + b, and a − bx2 . We just need to remember the two 

identities: 
sin2(x) + cos 2(x) = 1 tan2(x) + 1 = sec 2(x) . 

√ 
Example 10.1. Integrate 1 − x2 

Solution. We know that 1 − sin2(x) = cos2(x), so we will let x = sin(θ). Then dx = cos(θ)dθ, and so Z p Z q Z 
1 − x2dx = 1 − sin2(θ) cos(θ)dθ = cos 2(θ)dθ. 

2(θ) = 1To integrate cos2(θ), we use the identity cos(2θ) = 2 cos2(θ) − 1, so cos (cos(2θ) − 1). Hence2Z Z 
1 1 1 

cos 2(θ)dθ = cos(2θ) − 1dθ = sin(2θ) − θ + C. 
2 4 2 

Now, we want to go back to x’s. We know θ = sin−1(x) by our original subsitution. Recall that sin(2θ) = 
x2 sin(θ) cos(θ). We know sin(θ) = x = 1 , and we can get cos(θ) from the following triangle: 

√ 
1 − x2 

x 
1 

θ 

To get the sides of the triangle, we used the fact that sin(θ) is opposite/hypotenuse, and since sin(θ) = x/1, 
we can call x the opposite side and 1 the hypotenuse. We then get the adjacent side using the Pythagorean√ 
theorem. So sin(2θ) = 2x 1 − x2 , and our answer becomes p1 · 2x 1 − x2 − 

1 
sin−1(x) + C . 

4 2 
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2Remark. We saw above that for integrals involving 1 − x , we use x = sin(θ). For those involving x2 − 1, we 
will use x = sec(θ), and for those involving x2 + 1, we will use x = tan(θ).R 

dxExample 10.2. Evaluate 
(x2+4)3/2 . 

Solution. We want to use tan2(x)+1 = sec2(x), but we have x2 +4, not x2 +1. But notice that if x = 2 tan(θ), 
then x2 + 4 = 4 tan2(θ) + 4 = 4 sec2(θ). So let x = 2 tan(θ), so dx = 2 sec2(θ)dθ. Then Z Z Z Z Z 

dx 2 sec2(θ)dθ 2 sec2(θ)dθ 1 1 1 
= = = dθ = cos(θ)dθ. 

(x2 + 4)3/2 (4 sec2(θ))3/2 (8 sec3(θ)) 4 sec(θ) 4 

1Integrating, we get sin(θ) + C. Now draw the triangle. Since x = 2 tan(θ), tan(θ) = x/2, and this is4 
opposite/adjacent, so we can call the opposite side x and the adjacent side 2. The hypotenuse is then√ 
x2 + 4 by the Pythagorean theorem: 

x 

√ 
x2 + 4 

θ 
2 

xWe see that if x = 2 tan(θ), then sin(θ) = √ (opposite/hypotenuse), so the answer is 
x2+4 

1 x √ + C. 
4 x2 + 4 

Remark. Here we needed to adjust for the 4 in our substitution. There are formulas for this, but just think 
about the identities you are using and what constants you need to get them to work. 

1Example 10.3. Integrate √ . 
5x2−4 

Solution. Now we see the ax2 − b form, so we will let x be something times sec(θ). To make it easier to work 
with, factor out a 5 from the denominator: Z Z 

dx 1 dx q = √ q .� � 
x2 − 4 5 x2 − 45 5 5 

2Now, we will let x = √ sec(θ), so that 
5 

4 4 4 4 4 
x 2 − = sec 2(θ) − = (sec2(θ) − 1) = tan2(θ). 

5 5 5 5 5 
2Don’t forget dx = √ sec(θ) tan(θ)dθ. Thus, the integral becomes 
5 Z 2 Z√ sec(θ) tan(θ)dθ1 1 15√ = √ sec(θ)dθ = √ ln | sec(θ) + tan(θ)| + C. 25 √ tan(θ) 5 5

5 
√ 
5xFinally, we want this back in terms of x. Write sec(θ) = , so the triangle looks like: 2 

√ 
5x√ 

5x2 − 4 

θ 
2 

Here we used that sec(θ) is hypotenuse/adjacent, and got the remaining side by Pythagorean theorem. So √ √ 
5 5x2−4sec(θ) = x (which we knew already), and tan(θ) = . Thus, our answer is2 2 

√ p1 5 1 √ ln x + 5x2 − 4 + C . 
5 2 2 
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Remark. The trickiest part of trig sub is knowing what to make x, so just make sure you understand what 
identities you are using for each of the three types demonstrated above. 

11 Partial Fractions (8.5) 

We begin with words of caution: 

CAUTION. The first, and most important, thing to note about partial fractions is that you only use it when 
you can factor the denominator. For example, the integral Z 

dx 
x2 − 2x + 6 

is not a partial fractions problem because the denominator cannot be factored (such things are called irre-
ducible). 

CAUTION. The second important point is that even if the denominator is factorable, you need the degree of 
the numerator to be strictly less than the degree of the denominator. If it is not, you must do long division 
first. 

Now that we have made note of these two facts, we can actually describe the method. The idea is that 
1 we would like to break down fractions such as into easier pieces:x2 −x 

1 −1 1 
= + . 

x(x − 1) x x − 1 

We will do this by making a guess, i.e. assuming we can write 

1 A B 
= + , 

x(x − 1) x x − 1 

and then solving for A and B. However, first you need to learn what to guess. There are several cases, all 
having to do with how the denominator factors. For example, for an integral like Z 

dx 
,

(x − 1)2(x2 + 1)2 

the key numbers you want to pay attention to are: the degree of each irreducible term (in this case, the x − 1 
and the x2 + 1), and the powers they are raised two (in this case, both 2’s). You will then decompose them 
factor by factor. Let’s look at the cases: 

(1) Linear factor to the first power: If you had something like x − 1 in the denominator, then all you 
constant 1need in the decomposition is . So, for example, we wanted to break down , our guessx−1 (x−2)(x−3) 

A Bwould be + , since both x − 2 and x − 3 are linear, and each is raised only to the first power. x−2 x−3 

(2) Linear factors to a higher power: If you have something like (x + 1)2 in the denominator, then 
the fact that x + 1 is still only linear tells us we only need constants in the numerator. However, we 

A Bmust account for all powers of (x + 1), so we would need to have + An example: if we had x+1 (x+1)2 . 
1 , we would notice we still have linear terms, but now the x − 2 is squared. We deal with(x−2)2(x−3) 

this by just remembering to account for every power of our linear terms. So we would have to break 
it up as 

1 ? ? ? 
= + + . 

(x − 2)2(x − 3) x − 2 (x − 2)2 x − 3 

Since each term was still linear, we only put constants on top, so 

1 A B C 
= + + . 

(x − 2)2(x − 3) x − 2 (x − 2)2 x − 3 
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(3) Quadratic Factor to the first power: If the denominator contains an irreducible quadratic to the 
first power, such as x2 + 9, then you only need one term, but instead of a constant on top, you put a 

Ax+B xdegree 1 term, i.e. . Consider . We can deal with the (x − 3)2 as in (2). However, x2+9 (x−1)3 (x2 +1) 

since the x2 + 1 is an irreducible quadratic (i.e. it cannot be factored), we need to account for this by 
putting a linear term on top. The terms on top of the x − 3 fractions will all be constants since x − 3 
is degree 1 (so basically, it is one less degree on top). 

x A B C Dx + E 
= + + + . 

(x − 1)3(x2 + 1) x − 1 (x − 1)2 (x − 1)3 x2 + 1 

They point of this case is to notice the Dx + E on top of the x2 + 1. 

(4) Quadratic Factors to higher powers: We do the same thing as in (2), but remember you need 
1degree 1 terms on top. So for (x−1)2(x2+1)2 , we have linear power squared, so that is dealt with in case 

(2). For the (x2 + 1)2 , we will need to account for both (x2 + 1) and (x2 + 1)2 as in (2), but put linear 
terms on top: 

1 A B Cx + D Ex + F 
= + + + . 

(x − 1)2(x2 + 1)2 x − 1 (x − 1)2 x2 + 1 (x2 + 1)2 

Doing some examples will probably help, since we haven’t actually worked anything out. 

1Example 11.1. Find the partial fraction decomposition for (x−1)(x+1) . 

Solution. We must focus on the factors in the denominator: 

(a) The x − 1: This is a linear term to the first power, so we use (1) above, and the only contribution to 
Athe decomposition is x−1 . 

(b) The x + 1: Still only linear and to the first power, so again use (1). Here, the only term we need is 
B 

x+1 . 

So together we have 
1 A B 

= + . 
(x − 1)(x + 1) x − 1 x + 1 

Now to solve for A and B, combine the terms on the right side by getting a LCD (it will always be the 
original denominator): 

1 A(x + 1) B(x − 1) A(x + 1) + B(x − 1) 
= + = . 

(x − 1)(x + 1) (x − 1)(x + 1) (x − 1)(x + 1) (x − 1)(x + 1) 

This means 1 = A(x + 1) + B(x − 1). Now there are two approaches to solve for A and B: 

(1) Expand the right side and compare coefficients: The right side is Ax + A + Bx − B. Combining powers 
of x gives (A + B)x + (A − B). We need to set this to 1. But if this is going to be true for all x, then 

2the coefficients must be the same. For example, if ax + bx + c = 2x + 3, then a = 0, b = 2, and c = 3. 
So here, A + B = 0 since there are no x on the left side, and A − B = 1, since the constant term is 1. 
Now you have simultaneous equations: 

A + B = 0, 

A − B = 1. 

If you add them, you get 2A = 1, so A = 1/2. This means B = −1/2. Thus, 

1 1/2 −1/2 
= + . 

(x − 1)(x + 1) x − 1 x + 1 
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(2) The other method would be to get to 1 = A(x + 1) + B(x − 1), and say that since this should be true 
for all x, if we plug in certain values of x the equation is still true. In theory you could plug in any 
value, but some are convenient to choose. For example, if we pick x = −1 and plug it in, the x + 1 
term is 0, so 1 = B(−1 − 1) =⇒ B = −1/2, which is exactly what we found above. If we plug in 
x = 1, then the x − 1 term vanishes, and we get 1 = A(1 + 1) =⇒ A = 1/2. 

3x+5Example 11.2. Integrate . x2+3x+2 

3x+5Solution. Notice that the denominator factors as So this is a partial fractions problem. First,(x+2)(x+1) . 
we decompose the fraction. Since all our factors in the denominator are linear and to the first power, it is 
the easy case: 

3x + 5 A B 3x + 5 A(x + 1) + B(x + 2) 
= + =⇒ = . 

(x + 2)(x + 1) x + 2 x + 1 (x + 1)(x + 2) (x + 1)(x + 2) 

Here we skipped a step, but we combined the fractions. So 3x +5 = A(x + 1) + B(x + 2). Plugging in −1 on 
both sides gives 2 = B(−1+2) =⇒ B = 2. Plugging in −2 on both sides yields −1 = A(−2+1) =⇒ A = 1. 
Therefore 

3x + 5 1 2 
= + . 

x2 + 3x + 2 x + 2 x + 1 
So Z Z 

3x + 5 1 2 
dx = + dx = ln |x + 2| + 2 ln |x + 1| + C . 

x2 + 3x + 2 x + 2 x + 1 
24x +3x+2Example 11.3. Integrate . x2(x+2) 

Solution. Now we have a linear factor squared in the x2 and a linear factor to the first power with (x + 2). 
2(Notice we treat x as linear squared instead of an irreducible quadratic, but technically it won’t matter.) 

So the decomposition looks like 
4x2 + 3x + 2 A B C 

= + + . 
x2(x + 2) x x2 x + 2 

Either combine the fractions (with LCD x2(x + 2)), or just multiply both sides by x2(x + 2), and we get 

4x 2 + 3x + 2 = Ax(x + 2) + B(x + 2) + Cx2 . 

Plugging in x = 0 on both sides gives 2 = 2B =⇒ B = 1. Plugging in x = −2 on both sides gives 
12 = 4C =⇒ C = 3. We have run out of convenient values though, so plug in any x to get the final one. 
Plugging in x = 1 gives 9 = A(1)(3) + B(3) + C(1)2 . But we know B and C, so using these, we get 

9 = 3A + 3(1) + 3(1)2 =⇒ 3 = 3A =⇒ A = 1. 

Therefore Z Z 
4x2 + 3x + 2 1 1 3 1 

dx = + + dx = ln |x| − + 3 ln |x + 2| + C . 
x2(x + 2) x x2 x + 2 x 

CAUTION. Don’t just assume every term gives a logarithm. You’ll notice that the 1/x2 gave a −1/x, not 
an ln(x2). 

22x +x+1Example 11.4. Integrate . x(x2+1) 

2Solution. Now we have a linear term, x, and an irreducible quadratic in x + 1. The quadratic means we 
need a linear term on top: 

22x + x + 1 A Bx + C 2 = + =⇒ 2x + x + 1 = A(x 2 + 1) + (Bx + C)x. 
x(x2 + 1) x x2 + 1 

Plugging in x = 0 on both sides gives 1 = A(1) =⇒ A = 1. However, instead of plugging in more values, 
now might be a good time to try the other method, namely comparing coefficients: 

2 22x + x + 1 = Ax2 + A + Bx2 + Cx = (A + B)x + Cx + A. 
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2We already know A = 1. Comparing the x terms gives C = 1. Comparing x terms gives 2 = A + B, so 
B = 1. Thus, Z 2 Z 

2x + x + 1 1 x + 1 
dx = + dx. 

x(x2 + 1) x x2 + 1 

The first term gives ln |x|. To integrate the second term, break it up: Z Z Z 
x + 1 x 1 

dx = dx + dx. 
x2 + 1 x2 + 1 x2 + 1 

1The second integral is tan−1(x), and the first requires a u-sub: u = x2 + 1, du = 2xdx, so du = xdx:2 Z Z 
x 1 du 1 1 

dx = = ln |u| = ln |x 2 + 1|. 
x2 + 1 2 u 2 2 

Putting it all together, we get Z 22x + x + 1 1 
dx = ln |x| + ln |x 2 + 1| + tan−1(x) + C . 

x(x2 + 1) 2 

4 2 x +3x +1Example 11.5. Integrate . x(x2+1)2 

Solution. This is the last case, since we have an irreducible quadratic, but squared. So the decomposition 
looks like 

x4 + 3x2 + 1 A Bx + C Dx + E 
= + + . 

x(x2 + 1)2 x x2 + 1 (x2 + 1)2 

Observe that we had linear terms on top of the x2 + 1 terms because x2 + 1 is quadratic. This will be a little 
messy, but combining fractions eventually produces the equation 

x 4 + 3x 2 + 1 = A(x 2 + 1)2 + (Bx + C)(x 2 + 1) + (Dx + E)x. 

Here, it might actually be better to compare coefficients. Distributing the entire right side gives: 

x 4+3x 2+1 = A(x 4+2x 2+1)+Bx3+Bx+Cx2+C+Dx2+Ex = Ax4+Bx3+(2A+C+D)x 2+(B+E)x+(A+C). 

3Comparing x4 coefficients gives A = 1. Since there is no x term on the left, B = 0. Since there are no x’s 
either, B + E = 0, so E = 0. Comparing constant terms gives A + C = 1 =⇒ C = 0 since A = 1. Finally, 
since 2A + C + D = 3, we get D = 1 since A = 1 and C = 0. Thus, Z Z Z Z 

x4 + 3x2 + 1 1 x 1 x 
dx = + dx = dx + dx. 

x(x2 + 1)2 x (x2 + 1)2 x (x2 + 1)2 

1The first integral is ln |x|. The second requires a u-sub with u = x2 + 1, du = 2xdx, meaning du = xdx.2 
Therefore, Z Z 

xdx 1 du 1 1 1 
= = − · = − . 

(x2 + 1)2 2 u2 2 u 2(x2 + 1) 

Finally, Z 
x4 + 3x2 + 1 1 

= ln |x| − + C . 
x(x2 + 1)2 2(x2 + 1) 

2 xExample 11.6. Integrate . x2−1 

Solution. We can factor the denominator as (x + 1)(x − 1), but the degree on top is the same as the degree 
in the denominator. As mentioned in the second caution remark in the beginning of the subsection, we must 

2 x 1 1do long division first. Doing long division gives = 1 + = 1 + . [If you have trouble with x2−1 x2−1 (x−1)(x+1) 
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long division, either look in the textbook or come to office hours and I’d be happy to explain it to you.] So 
we have Z 2 Z 

x 1 1 
dx = 1 + dx = x + dx. 

x2 − 1 x2 − 1 x2 − 1 
1Thankfully, in example 2.16, we already worked out the partial fraction decomposition for x2−1 . So using 

that, we get Z Z 
1 1/2 −1/2 1 1 

x + dx = x + + dx = x + ln |x − 1| − ln |x + 1| + C . 
x2 − 1 x − 1 x + 1 2 2 

12 Improper Integrals and Comparison Test (8.6) 

12.1 Improper Integrals 

An integral can be improper for two reasons: (1) You have infinite bounds or (2) a discontinuity in the 
interval (or both). 

Example 12.1. The integral Z ∞ 1 
dx 

x1 

1is improper because we have an infinite bound. Note that the discontinuity of our function f(x) = at x = 0 x 
does not matter since it is not in the interval [1, ∞). 

Example 12.2. The integral Z 1 1 
dx 

x + 5 −∞ 

is improper because we have an infinite bound and the function f(x) = 1 is not continuous at x = −5,x+5 
which is in our interval. 

When faced with an improper integral, the first thing you need to do is identify all the improper parts. 
We consider the cases: 

(1) One improper bound: Suppose you have an integral which is only improper for one reason, and that 
reason is at the bound. For example, the first example (2.22) above is fine because the only improper 
part of the integral is the infinite bound, and it is a bound. Example 2.23 is not good because not only 
do we have the infinite bound, but also the discontinuity inside the interval. The integral Z 1 1 

dx 
x−1 

is also bad because we have only the discontinuity at x = 0, but it happens inside the interval [−1, 1]. 
But in the case where we have only one improper bound and we are ok inside the interval, we deal with 
the improper bound by replacing it by a variable, say M , and taking a limit to the improper bound. R ∞ 1Example 12.3. Evaluate dx

1 x 

Solution. The ∞ is the problem, so you replace it by some number M , and then we will let M go to 
infinity: Z ∞ Z M1 1 

dx = lim dx. 
x M →∞ x1 1 

You then compute the integral as you normally would: Z M M1 
dx = ln |x| = ln |M | − ln |1| = ln |M |. 

x 11 
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□ 

Now take a limit as M →∞: Z M 1 
lim dx = lim ln |M | = ∞. 

M→∞ x M→∞1 

Since we got ∞ and not a number, the integral is said to diverge. If we had gotten a number, then the 
integral is called convergent. 

Some other worked examples: 

Example 12.4. Evaluate Z ∞ 1 
dx. 

0 1 + x2 

Solution. This integral is improper because of the infinite bound, and there are no discontinuities. So 
replace ∞ by M and then take a limit: Z ∞ 1 

Z M dx 

0 
dx 

1 + x2 
= lim 

M →∞ 0 1 + x2 

M 
= lim tan−1(x) 

M →∞ 0 

= lim tan−1(M) − tan−1(0)
M →∞ 

= lim tan−1(M)
M →∞ 

π 
= ,

2 

so the integral converges. 

Example 12.5. Evaluate Z 1 1 √ dx. 
0 x 

Solution. The integral is bad because the function is not continuous at x = 0, but this is the only 
problem. So put in a number M , and take a limit: Z 1 Z 11 1 √ dx = lim √ dx. 

x M→0+ x0 M 

[You’ll notice the limit is from the right: M is supposed to be a number between 0 and 1, and then we 
are sliding M down to 0, so we are going from the right. If it had been in the upper bound, we would 
go from the left.] Z 1 1 √ 1 

lim √ dx = lim 2 x 
M→0+ x M →0+ MM √ 

= lim 2 − 2 M 
M →0+ 

= 2 . 

Note that this integral converges as well. 

(2) Two improper bounds or discontinuity inside the interval: With every other improper integral, 
the goal will be to turn it into a bunch of integrals of the previous case. 

Example 12.6. Evaluate Z 1 1 
dx. 

x−1 
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Solution. It is only improper because of the discontinuity at x = 0, but it happens inside the interval. 
You make it happen at the bound by splitting up the integral (at the discontinuity): Z 1 Z 0 Z 11 1 1 

dx = dx + dx. 
x x x−1 −1 0 

Now each integral is improper for exactly one reason, and that reason is one of the bounds. Therefore 
you evaluate each integral as we did in the previous case: Z 1 Z 11 1 

dx = lim dx 
x M →0+ x0 M 

1 
= lim ln |x|

M →0+ M 

= lim ln |1| − ln |M |
M →0+ 

= lim − ln |M |
M →0+ 

= ∞, 

so this integral diverges. As soon as one of the integrals of your sum diverges, the whole thing diverges, R 0 1 so we don’t even need to compute the other integral −1 x dx. The original integral only converges if 
all your new integrals converge. 

Example 12.7. Evaluate Z ∞ 1 
dx. 

x(x + 1) 0 

Solution. This integral is improper because of the infinite bound, but it is also improper because of the 
discontinuity at x = 0 (the discontinuity at x = −1 does not matter because it is not in the interval 
[0, ∞)). We have two improper bounds, so we must split up the integral. Pick your favorite point 
between 0 and ∞: Z ∞ Z 1 Z ∞1 1 1 

dx = dx + dx. 
x(x + 1) x(x + 1) x(x + 1) 0 0 1 

Now each integral has only one improper bound and nothing bad happens inside the interval, so we 
can evaluate each as above. We can write: Z 1 Z 11 1 

dx = lim dx. 
x(x + 1) M→0+ x(x + 1) 0 M 

This is a partial fractions integral, and we leave it to the reader to find Z 1 Z 1 11 1 1 
dx = − dx = ln |x| − ln |x + 1| = [ln |M | − ln |M + 1|] − [0 − ln |2|]. 

x(x + 1) x x + 1 MM M 

We need to take a limit: 

lim ln |M | − ln |M + 1| + ln |2| = ln |2| + lim ln |M | − ln |M + 1|
M→0+ M→0+ 

As M → 0+ , ln |M | → −∞, and ln |M + 1| → ln(1) = 0. So the whole limit approaches −∞, and so 
the integral diverges . 

Example 12.8. Evaluate Z ∞ x 
dx. 

−∞ x
2 + 1 
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□ 

Solution. This has no discontinuities, but it has two infinite bounds, so we need to break up the 
integral: Z 0 Z ∞ x x 

dx + dx. 
−∞ x

2 + 1 0 x2 + 1 

Let’s do the second integral first: Z ∞ Z M x x 
dx = lim dx. 

0 x2 + 1 M →∞ 0 x2 + 1 

Now, Z M x 
dx 

0 x2 + 1 

2 durequires a u-sub: u = x + 1, du = 2xdx, so xdx = . The x = 0 bound becomes a u = 02 + 1 = 12 
bound, and the x = M bound becomes u = M2 + 1. So the integral is Z M2 +1 M2 +11 du 1 1 1 

= ln |u| = [ln |M2 + 1| − ln |1|] = ln |M2 + 1|. 
2 u 2 1 2 21 

So Z M x 1 
lim dx = lim ln |M2 + 1| = ∞, 

M→∞ 0 x2 + 1 M →∞ 2 

so the whole integral diverges. R ∞ 1Example 12.9. Evaluate dx.−∞ x2+1 

Solution. Again, there are no discotinuities, but we have two improper bounds, so we can break the 
integral up: Z ∞ Z 0 Z ∞1 1 1 

dx = dx + dx. 
x2 + 1 x2 + 1 x2 + 1 −∞ −∞ 0 

The second integral we computed in Example 2.25, and it converged to π/2. So we also have to check 
the other integral: Z 0 Z 0 01 

dx = lim 
1 

dx = lim tan−1(x) = lim tan−1(0) − tan−1(N). 
−∞ x

2 + 1 N →−∞ N x
2 + 1 N→−∞ N N→−∞ 

Again, tan−1(0) = 0, and tan−1(N) → −π/2 as N → −∞, so this integral also converges to π/2 (since 
0 − (−π/2) = π/2). Therefore our original integral converges, and Z ∞ Z 0 Z ∞1 1 1 π π 

dx = dx + dx = + = π . 
x2 + 1 x2 + 1 x2 + 1 2 2−∞ ∞ 0 

CAUTION. Be aware of the following: 

(1) limx→±∞ sin(x) does not exist. The same goes for cosine and tangent. 

(2) Please remember that Z ∞ Z M 

f(x)dx =6 lim f(x)dx. 
M →∞−∞ −M 

You should know, now, that since this has at least two improper traits (two infinite bounds), we need 
to break up the integral. 

(3) Don’t forget ∞ −∞ and 0 · ∞ are indeterminate forms, so you should remember how to deal with 
these limits (look back at your Math 3A notes). 
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12.2 Comparison Test 

Theorem 12.10. Suppose f(x) and g(x) are continuous on [a, ∞) with 0 ≤ f(x) ≤ g(x). Then Z ∞ Z ∞ 

0 ≤ f(x)dx ≤ g(x)dx. 
a a R ∞ R ∞ R ∞

The test says that if g(x)dx converges, then so does f(x)dx, and if f(x)dx diverges then so 
a a aR ∞

does g(x)dx. This should make sense: if g(x) has finite area, then so must f(x) since f(x) is smaller,
a 

and if f(x) has infinite area, then so does g(x) since g(x) is bigger. 

In truth, we can apply this test to all sorts of improper integrals provided that there is only one improper 
bound and it happens at an endpoint. However, the functions must be greater than or equal to zero. 

12.2.1 What to compare to: the p-test 

Notice that, from the statement of the theorem, if we want to prove an integral converges, we need to find 
a bigger function which we know converges. Similarly, if we want to prove an integral diverges, then we 
must find a smaller function which we know diverges. This means that when you first encounter an integral, 
you have to make an educated guess as to whether you think the integral converges or diverges, because 
this determines which way you need to bound the function. To make these guesses, you want to keep the 
following in mind: 

(1) Integrals of the form Z ∞ 1 
dx, 

xp 
a 

where a > 0 (must be strictly positive), converge when p > 1 and diverge when p ≤ 1. 

(2) Integrals of the form Z a 1 
dx, 

xp
0 

where a > 0 is not infinity, converge when p < 1 and diverge when p ≥ 1. Notice nothing good ever 
happens with p = 1, and that everything here is the 

(3) Now consider Z ∞ 

e kxdx, 
a 

where a is not −∞. This converges if k < 0 and diverges if k ≥ 0. Exponential decay is as good as it 
gets. 

(4) Similarly, if we consider Z a 

e kxdx, 
−∞ 

now with a not ∞, this converges if k > 0 and diverges if k ≤ 0. With these last two, notice that all 
you need is for the graph of the exponential to be tending to 0 as you approach the infinite bound. 
That should make it easy to remember. 

12.2.2 Examples R ∞ 1Example 12.11. Determine whether dx converges or diverges. 
1 x4 +1 
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Solution. This is not an integral we know how to compute, so we use the comparison test. First, we need 
to make a guess, as this will determine which way we want inequalities to go. Notice that as x → ∞, theR ∞4 1 1bottom just behaves like x , since the extra 1 is insignificant. So the fraction behaves like 4 , and dx4x 1 x
converges by case (1) of the integrals above. So we can make the guess that the integral converges. One 
thing you should try and do is “remove” the terms you don’t care about, assuming the inequality goes in 
the proper direction when you do. In this case, we’d like to remove the 1 from the denominator, so is Z ∞ Z ∞1 1 

dx ≤ dx? 
1 x4 + 1 1 x4 

4 1 1Well yes, since x4 + 1 ≥ x , meaning ≤ 4 , which is what we wanted. The other way to think about it x4+1 x R ∞1 1 1is that the denominator of is bigger than that of 4 , so the fraction is smaller. The integral dx x4+1 x 1 x4 

converges by the p-test, so by comparison, the original integral converges. 

Example 12.12. Determine whether Z ∞ sin2(x) 
dx 

x4 
3 

converges or diverges. 

Solution. This is not something you want to try and integrate, but let’s determine whether it converges or 
diverges. Now as x gets big, the sin2(x) is not so significant (it is between 0 and 1), and the bottom is just 
4x . Looking at the case (1) above again, p = 4 > 1, so we guess this should converge. To prove it, we need 
to find a bigger function which converges. Again, we’d like to remove the term we don’t care about, this one 
being sin2(x). We know −1 ≤ sin(x) ≤ 1, so 0 ≤ sin2(x) ≤ 1. So we have 

sin2(x) 1 ≤ . 
x4 x4 

Therefore Z ∞ Z ∞sin2(x) 1 
dx ≤ dx, 

x4 x4 
3 3R ∞ 1and since 

3 x4 dx converges, so does our integral. 

Example 12.13. Determine whether Z ∞ 2x + x + 1 
dx 

5 x4 + x2 + 3 

converges or diverges. 

2 4Solution. Again, let’s look at behavior. As x → ∞, the top behaves like x and the bottom like x , so the 
2 R ∞x 1 1fraction behaves like = Since dx converges, we again make the guess that it will converge. Now 4 2 . 2 

we need to find a good function to compare it to. This time, in the denominator, we do not need the x2 and 
x x 5 x 

4the 3, since they were insignificant compared to the x . Thankfully, removing them from the denominator 
makes it smaller, which makes the entire fraction bigger. So Z ∞ Z ∞2 2x + x + 1 x + x + 1 

dx ≤ dx. 
5 x4 + x2 + 3 5 x4 

We cannot, however, remove the x and the 1 from the numerator, since this would make the numerator 
smaller and, consequently, the entire fraction smaller. In this example, there are two ways to go. The trick 
we wanted to illustrate here was that if you cannot remove terms as you’d like, then try and replace them 
by terms you do care about. In this case, we want x2’s in the numerator. If x > 1 (which it is since we are 

2considering [5, ∞)), then x ≤ x2 and 1 ≤ x , so 

2 2 2 2 2x + x + 1 x + x + x 3x ≤ = . 
x4 x4 x4 R ∞ 3Since dx converges, so does our integral. 25 x

30 



Remark. We make two remarks: 

2(1) In this problem, we did not actually have to replace the numerator by 3x . Instead, we could have 
observed Z ∞ Z ∞2x + x + 1 1 1 1 

dx = + + dx, 
x4 x2 x3 x4 

5 5 

and each term converges by the p-test. 

(2) If the integral was on the interval [1/2, ∞), then we could not do the trick for the numerator since it 
required x > 1. However, when inequalities only work on part of your interval (more specifically, on 
some subinterval containing the improper part), then we could break up the integral: Z ∞ Z 1 Z ∞2 2 2x + x + 1 x + x + 1 x + x + 1 

dx = dx + dx. 
x4 + x2 + 3 x4 + x2 + 3 x4 + x2 + 3 1/2 1/2 1 

The 1 was chosen as the cutoff because we needed x > 1. The second integral now converges by the 
work above. And for the first, you simply observe that it is not improper for any reason, and so it is 
just a number. Some number plus a convergent integral is convergent. R ∞ √ 1Example 12.14. Determine whether dx converges or diverges. 

1 x−1 R 11 1Solution. Now, the behavior is like √ , and √ dx diverges (p-test and p = 1/2 < 1), so we make the 
x 0 x 

guess that our integral diverges. This time, we want to find a smaller function which we know diverges. But 
notice that √ 1 ≥ √1 since the denominator of √ 1 is less than that of √1 , which makes the fraction 

x−1 x x−1 x 

bigger. Alternatively, start with 
√ 
x − 1 ≤

√ 
x (which it is), and take reciprocals: √ 1 ≥ √1 . So 

x−1 x Z ∞ Z ∞1 1 √ dx ≥ √ dx, 
x − 1 x1 1 

and since the latter integral diverges, so does our original integral. 

Example 12.15. Determine whether Z ∞ ln2(x)√ dx 
x1 

converges or diverges. 

Solution. This is sort of as tricky as it gets. Now as x → ∞ the ln2(x) grows incredibly slowly, so the 
√ 
xR ∞ 1dominates the fraction. Since 

1 
√ 
x dx diverges, we can guess that our integral will too. So now we need 

to bound our function from below. But let’s think: it would be nice if we could say ln2(x) ≥ 1, since then 

ln2(x) 1 √ ≥ √ , 
x x R ∞ 1and because 

1 
√ 
x dx, we would be done by the comparison test. However, this is not true on our interval. 

However, if x ≥ e, then ln(x) ≥ 1, so ln2(x) ≥ 1 as well. So instead, what we do is break up our integral: Z ∞ Z e Z ∞ln2(x) ln2(x) ln2(x)√ dx = √ dx + √ dx. 
x x x1 1 e 

This first integral does not matter to us, since it is just a number (indeed, the function is continuous and 
the interval is finite), so it does not influence the convergence or divergence of our original integral. And for 
the second integral, we now use the bound we want: ln2(x) ≥ 1, so Z ∞ Z ∞ln2(x) 1 √ dx ≥ √ dx, 

x xe e 

and this integral diverges by the p-test above. Therefore our integral diverges. 
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□ 

R ∞ 1Example 12.16. Determine whether dx converges or diverges. 
1 x+ex 

x 1 −xSolution. As x gets large, the e is much bigger than the x, so the function behaves like = e , and exR ∞ 
e−xdx converges. So we guess our integral converges. Indeed, we observe that

1 Z ∞ Z ∞1 1 
dx ≤ dx 

x + ex ex 
1 1 

since removing the x makes our denominator smaller, thereby making the fraction bigger. Since the second 
integral converges, so does our initial integral. 

1 1Remark. Observe that we could have also said ≤ , but this would not help us since the integral of x+ex x 
1/x would diverge. This is why it is generally good to keep track of the terms that influence the convergence 
or divergence of the integral when you make the initial guess. R ∞ −x −1/xExample 12.17. Determine whether e e converges or diverges. 

1 

1 1Solution. First, you see that this function is the same as ex · 1/x . Now the 1/ex → 0, but the 1/e1/x → 1 
e R ∞1 1 as x → ∞, not 0. So ti is the which we want to focus on. Since dx converges, we guess that our ex ex1 

integral does as well. But finding the function to compare to is tougher. But you notice that if 1 ≤ x < ∞, 
−1/xthen e < 1, since e to any negative exponent is less than 1, and −1/x is indeed negative for x > 0. So 

−x −1/x −xe e < e , and thus Z ∞ Z ∞ 
−x e e −1/xdx ≤ e −xdx, 

1 1 

and since the latter integral converges, so does our original integral. 

13 Trapezoidal Rule and Error Bound (8.8) R b
Summary 13.1. (1) To approximate f(x)dx using trapezoidal rule with N subintervals, partition [a, b]

a 
b−ainto N pieces, each piece having length Δx = . ThenN 

1 b − a 
TN = · (f(a) + 2f(a +Δx) + 2f(a + 2Δx) + . . . + 2f(a + (N − 1)Δx) + f(a + NΔx)). 

2 N 

(2) If f 00(x) exists and continuous, and K2 is any number with |f 00(x)| ≤ K2 for any x in the interval 
K2(b−a)3 

[a, b], then the error from TN is at most .12N2 R 4
Example 13.2. Approximate x2dx using Trapezoidal rule with 4 trapezoids. Then find N so that the

0 
error from TN is at most .001. 

b−a 4−0Solution. First, Δx = = = 1. Using the formula, N 4 

T4 =
1 · 1(f(0) + 2f(1) + 2f(2) + 2f(3) + f(4)) = 

1
(0 + 2 · 12 + 2 · 22 + 2 · 32 + 42) = 22 . 

2 2 

f 00(x)To find N so that the error is at most .001, first find f 00(x): = 2. We need to find K2 so that 
|f 00(x)| ≤ K2 on [0, 4]. But as f 00(x) is constant, we could just take K2 = 2 (or any bigger number). So the 

2(4−0)3 

error of TN is at most . Since we want the error to be at most .001, we set12N 2 

12N2 12 · .001 12 · .001 

Before we start the next example, we will need a fact (which you are free to use): |a + b| ≤ |a| + |b|. This 
is called the triangle inequality. R π
Example 13.3. Find N so that the error from TN to approximate x cos(x)dx is at most .01.

0 

2 · 64 ≤ .001 =⇒ 
128 ≤ N2 =⇒ N ≥ 

r 
128 

. 
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B 

EJ 
-

EJ 

2(2 − 1)
3 

≤ .01 =⇒ 
2 

≤ N
2 
=⇒ N ≥ s 

2 
. 

Solution. Again, we just need K2. If f(x)= x cos(x), calculate f00(x)= −2 sin(x) − x cos(x). Now, you do 
not want to actually calculate the maximum of |f00(x)| on [0,π]. So instead, we will not try and find the best 
possible bound. Instead, we use the triangle inequality from above: 

|− 2 sin(x) − x cos(x)| = |− 2 sin(x)+ −x cos(x)|≤|− 2 sin(x)| + |− x cos(x)| =2| sin(x)| + |x cos(x)|. 

Now, the maximum of sin(x) on [0,π] is 1, and the same for cos(x). Finally, since |x| can be at most π on 
[0,π], we see 

2| sin(x)| + |x cos(x)|≤ 2 · 1+ π · 1=2+ π. 

K2(b−a)
3 

(2+π)(π−0)
3 

So we will let K2 =2+ π. So the error is at most = . To find N, we set 12N2 12N2 

s 
(2 + π)π

3 (2 + π)π
3 (2 + π)π3 

≤ .01 =⇒≤ N
2 
=⇒ N ≥ . 

12N2 12(.01) 12(.01) 

R 2 1
Example 13.4. Find N so that the error from TN to approximate dx is at most .01. 1 x 

12
Solution. Again, f(x) = means f00(x) = Now, |f00(x)| will be biggest when x is smallest (since smaller 3 . xx 

2
denominators mean bigger fractions), so in this case, when x = 1. So |f00(x)|≤ = 2. So K2 = 2 again. So 13 

12N2 12(.01) 12(.01) 

14 Sequences (11.1) 

First, we list the main ideas, and then we’ll elaborate and illustrate. 

Summary 14.1. (1) A sequence an has a limit L if an “gets really close” to L as n →∞ 

(2) Let an = f(n) be a sequence. If f(x) → L as x →∞, then an → L. 

(3) If f(x) is continuous and an → L, then f(an) → f(L). 

(4) If {an}, {bn} and {cn} are sequences with bn ≤ an ≤ cn (for n large enough), and bn and cn both have 
limit L, then an → L as well. 

(5) If {an} is an increasing sequence which is bounded above, then an converges. Similarly, if {an} is a 
decreasing sequence which is bounded below, then an converges. 

(6) Formally, a sequence an → L if for all �> 0, there exists M such that for all n>M, |an − L| <�. 

Intuitively, the limit of a sequence is the number the sequence gets close to as n →∞, if one exists. The 
1

easiest example would probably be an = . This has terms 1, 1/2, 1/3,... (corresponding to n =1, 2, 3,...) n 
and, over time, this sequence of numbers gets really close to 0. So an has limit 0, and it converges. 

On the other hand, the sequence an =(−1)
n has terms −1, 1, −1, 1,..., and so it does not approach a 

single number. Therefore no limit exists, and the sequence diverges. 

n+1
Example 14.2. Find the limit of an = . 2n 

n+1
Solution. Most of the time, we will use item (2) above. What is says is that instead of looking at , we 2n 

x+1 
can look at f(x) = . This is good because now we can use calculus. In particular, we can use L’Hopital: 2x 

x +1 LH 11 
lim =lim = . 
x→∞ 2x x→∞ 22 

1 
Since we got a limit here, the limit of an is also . 

2 
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□ 

□ 

□ 

□ 

□ 

� � −n 1Example 14.3. Find the limit of an = e cos . n � � −x 1 −xSolution. Again, we can let f(x) = e cos . Now, as x →∞, e → 0, and cos(1/x) → 1 since 1/x → 0 x 

(and cos(0) = 1). Therefore, the limit of f(x) is 0, meaning the limit of an is also 0 . 

Example 14.4. Find the limit of an = sin(nπ). 

Solution. If f(x) = sin(xπ), then f(x) has no limit as x →∞ (as the graph oscialltes). However, we cannot 
conclude that the sequence diverges. In fact, the sequence does have a limit. If we list out the first few terms, 
then we get 0, 0, 0, . . . (since 0 = sin(π) = sin(2π) = sin(3π) = . . .). Therefore the limit of this sequence is 
just 0 . 

CAUTION. The previous example illustrates an important point, which is that item (2) in the summary is 
NOT applicable if f(x) has no limit as x → ∞. You must try something else in such situations (such as 
listing the first few terms to get a feel for what is happening). This example also shows that while sin(n) 
has no limit as n →∞, the π inside the sin makes things work. The reader should check that the sequence 
an = sin(nπ/2) also has no limit. 

n+1 
2n2+3Example 14.5. Find the limit of an = e 

xSolution. This is one of those situations where item (3) from the summary is useful. Since f(x) = e is 
n+1 x+1continuous, it suffices to see where the exponent goes as n →∞. For this, let g(x) = Then as2n2 +3 2x2+3 . 

x →∞, we have ∞/∞, so we can use L’Hopital’s rule: 

x + 1 1 
lim = lim = 0. 
x→∞ 2x2 + 3 x→∞ 4x 

n+1 0Therefore → 0, and so an → e = 1 .2n2+3 � � 
1Example 14.6. Find the limit of an = ln . n 

1Solution. As n →∞, → 0. So we have ln of something approaching 0, to this sequences diverges to −∞. n 

sin(n)Example 14.7. Find the limit of an = n 

Solution. Here, as n →∞, we have sin of something going to ∞, which is a big clue for squeeze theorem (as 
is cos of something going to ∞). To use it, we can say 

−1 ≤ sin(n) ≤ 1, 

so 
−1 sin(n) 1 ≤ ≤ . 
n n n 

Since both ±1/n → 0, we get our limit is 0 . 

(−1)n 

Example 14.8. Find the limit of an = 2n+3 

Solution. Again, as n → ∞, the (−1)n is bouncing between −1 and 1. This is also another classic squeeze 
theorem problem. Here, (−1)n is between −1 and 1 (in fact, it is always one of these two): 

−1 (−1)n 1 −1 ≤ (−1)n ≤ 1 =⇒ ≤ ≤ . 
2n + 3 2n + 3 2n + 3 

1Since both ± → 0 as n →∞, our limit is again 0 .2n+3 

Remark. The previous two examples show that you typically use squeeze theorem when we have these 
“osciallating” terms as n →∞ which we want to get rid of to make the limit easier. Note that we would not 
do this in the case an = sin(n), since this limit does not exist. The only reason the previous two examples 
worked is because we had other terms making the whole thing go to 0. 
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□ 

sin(n)−cos(n)Example 14.9. Find the limit of an = . en 

Solution. This is again a squeeze theorem problem. Now the problem is the sin(n) − cos(n) (as both of these 
have no limits as n →∞), and so this is what we try and bound. Since sin(n) and cos(n) are both bounded 
by ±1, we can say 

−2 ≤ sin(n) − cos(n) ≤ 2. 

(The biggest sin(n)−cos(n) could be is when sin(n) = 1 but cos(n) = −1, even if this never actually happens. 
Similarly for the lower bound.) So 

−2 2 ≤ an ≤ . 
en en 

Since both ±2 → 0, we get an → 0 . en 

A sequence {an} is bounded above if there is a number B such that an < B for all n. Similarly, a sequence 
{an} is bounded below if there exists B such that an > B for all n. Finally, a sequence is bounded if there 
exists A and B with A < an < B for all n (i.e. it is bounded both above and below). We have the following 
theorem: 

Theorem 14.10. An increasing sequence which is bounded above converges. Similarly, a decreasing sequence 
which is bounded below converges. 

√ 
Example 14.11. Let a1 = 2 and an+1 = 2an + 1. Show: 

(a) an < 4 for all n. 

(b) an+1 > an for all n. 

(c) Conclude that an converges, and find the limit. 

Solution. (a) To show an < 4 we use induction: 

(i) Base case: n = 1: We have a1 = 2 < 4, which means the base case holds. 

(ii) Assume it is true for n = k, we want to show it is true for n = k + 1: Being true for n = k√ 
means ak < 4. We want to show ak+1 < 4. We know ak+1 = 2ak + 1. Since ak < 4 by √ √ 
assumption, ak+1 = 2ak + 1 < 2 · 4 + 1 = 3 < 4. Therefore the inductive step also holds, and 
the statement is true for all n. 

(b) Again, to show an+1 > an, we use induction: 
√ p √ 

(i) Base case: n = 1: We need a2 > a1. We know a2 = 2a1 + 1 = 2(2) + 1 = 5, and a1 = 2.√ 
Since 5 > 2, we know a2 > a1, and the base case holds. 

(ii) Assume it is true for n = k, we want to show it is true for n = k + 1: Being true for n = k√ √ 
means ak+1 > ak. We want to show ak+2 > ak+1, i.e. 2ak+1 + 1 > 2ak + 1. We know √ √ √ 
ak+2 = 2ak+1 + 1, and since ak+1 > ak, 2ak+1 + 1 > 2ak + 1 = ak+1, as desired. Therefore 
the inductive step holds and the statement is true for all n. 

(c) Since {an} is an increasing sequence (by (b)) which is bounded above (by (a)), we know the sequence 
converges. To find the limit, say an → L. Then an+1 → L as well (the shift doesn’t change the limit).√ √ 
So taking limit as n → ∞ of both sides of an+1 = 2an + 1 gives √L = 2L + 1, so L2 = 2L + 1. To 
solve L2 − 2L − 1 = 0, we use the quadratic formula to get L = 1 ± 2. Since an > 0 for all n, we have √ 
to take the positive root, so the limit is 1 + 2. 

1Example 14.12. Let a1 = 2 and an+1 = (an + 5). Show:4 

(a) an+1 < an 

(b) an > 1 for all n. 

(c) Conclude that {an} converges, and find the limit. 
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Solution. (a) To show an+1 < an, we use induction: 

1 1 7(i) Base case: n = 1: We need a2 < a1. We know a2 = (a1 + 5) = (2 + 5) = , and a1 = 2. Since4 4 4 
7 
4 < 2, we know a2 < a1, and the base case holds. 

(ii) Assume it is true for n = k, we want to show it is true for n = k + 1: Being true for n = k 
1 1 means ak+1 < ak. We want to show ak+2 < ak+1, i.e. (ak+1 + 5) < (ak + 5). We know 4 4 

1 1 1 ak+2 = (ak+1 + 5), and since ak+1 < ak, (ak+1 + 5) < (ak + 5) = ak+1, as desired. Therefore 4 4 4 
the inductive step holds and the statement is true for all n. 

(b) To show an > 1 we use induction: 

(i) Base case: n = 1: We have a1 = 2 > 1, which means the base case holds. 

(ii) Assume it is true for n = k, we want to show it is true for n = k + 1: Being true for n = k means 
1 ak > 1. We want to show ak+1 > 1. We know ak+1 = (ak + 5). Since ak > 1 by assumption,4 

1 1 3 ak+1 = (ak + 5) > (1+ 5) = > 1. Therefore the inductive step also holds, and the statement 4 4 2 
is true for all n. 

(c) Since {an} is bounded below by (b) and decreasing by (a), it converges. To find the limit, say an → L. 
1Again, an+1 → L as well. Taking the limit as n → ∞ of both sides of an+1 = (an + 1), we get4 

1 5L = (L + 5). Solving for L gives L = 3 .4 

The last thing we will do it use the �-definition of a limit of a sequence. All item (6) of the summary is 
saying that for any �, which you should think of an “error,” if we go out far enough in the sequence, then 
the terms of the sequence are within this error of the limit of the sequence. 

2 nExample 14.13. Find M so that |an − 1| < .01 for n > M , where an = . n2+1 

2 nSolution. We want to find M so that n2+1 − 1 < .01. We can just try solving this inequality for n: 

Combining the fractions yields: 

2 √n −1 1 2− 1 < .01 =⇒ < .01 =⇒ < .01 =⇒ 1 < .01(n 2+1) =⇒ 99 < n =⇒ 99 < n. 
n2 + 1 n2 + 1 n2 + 1 

√ 
So letting M = 99 will do it. 

15 Summing Infinite Series (11.2) 

Definition 15.1. An infinite series is just an infinite sum, usually written like 

∞X 
an = a1 + a2 + . . . . 

n=1 

An example would be 
∞X 1 1 1 

= 1 + + + . . . , 
n 2 3 

n=1 

1where the terms are gotten by plugging in n = 1, 2, 3, . . . into . n P∞
Definition 15.2. Let be a series. The N -th partial sum, denoted SN , is n=1 an 

NX 
SN = an = a1 + a2 + . . . + aN . 

n=1 P∞ 1Example 15.3. For the series , write out the N -th partial sum SN . Also write out S5. n=1 n 
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Solution. The N -th partial sum would be 

NX 1 1 1 1 
SN = = 1 + + + . . . + . 

n 2 3 N 
n=1 

So, 
1 1 1 1 

S5 = 1 + + + + . 
2 3 4 5 

So partial sums are just what we get by stopping the series after N terms. To determine the sum of an 
infinite series, what we’re going to do is instead consider the sequence of partials sums: bn = Sn. So theP∞ 1sequence we are looking at is just S1, S2, S3, . . .. Again, for the example, this would correspond to n=1 n 
the sequence 

1 1 1 1 1 1 
1, 1 + , 1 + + , 1 + + + , . . . 

2 2 3 2 3 4 
and so on. 

Definition 15.4. If the sequence {Sn} of partial sums converges to a number S, then the series is said toP∞ 
converge, and the sum is = S. If the limit of the Sn does not exist, the series diverges. n=1 an P∞ 1Example 15.5. Sum the series . n=1 2n 

Solution. We will see later that the N -th partial sum is 

XN 
1 2N − 1 

SN = = . 
2n 2N 

n=1 

So to determine the sum, we take 
2N − 1 

lim SN = lim . 
N→∞ N→∞ 2N 

This is now a limit of a sequence. To do this, we can notice that by L’Hopital’s rule, 

2x − 1 LH 2x ln(2)
lim = lim = 1. 
x→∞ 2x x→∞ 2x ln(2) 

2N −1 1Therefore limN→∞ = 1. (The alternative would have been simply to write 2
N −1 = 1 − and notice

2N 2N 2N 

that 1/2N → 0.) Since limN→∞ SN = 1, the sum 

∞X 1 
= 1. 

2n 
n=1 P∞ 2Example 15.6. Determine whether the series converges or diverges. If it converges, find the n=1 n(n+2) 

sum. 

Solution. If we want to find the sum, we will need the partial sums. To do this, observe that 

2 1 1 
= − . 

n(n + 2) n n + 2 

(You could get this using partial fractions if you want.) So 

∞ ∞ � �X X2 1 1 
= − . 

n(n + 2) n n + 2 
n=1 n=1 

To find the partial sum, we just write out that � � � � � � � � � � � � 
1 1 1 1 1 1 1 1 1 1 1 

SN = 1 − + − + − + − + − + . . . + − . 
3 2 4 3 5 4 6 5 7 N N + 2 
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(This is just the first N terms of the series.) Not all the middle terms cancel. For example, the 1 from the2 
second term will not cancel. The terms remaining are 

1 1 1 
SN = 1 + − − . 

2 N + 1 N + 2 

→ 3As N →∞, SN 2 , and so the sum 
∞X 2 3 

= . 
n(n + 2) 2 

n=1 

In particular, the series converges. 

Remark. The previous example is called a telescoping series. These come up frequently, so be sure you 
understand it. 

One thing to notice immediately is the following. Suppose an does not go to 0. Then in the infinite sumP∞ 
n=1 an, we have no hope of converging because the partial sums will just get bigger (or jump around if we 

have an alternating series). For example, if we consider 

∞X n 
, 

n + 1 
n=1 

nthe terms an = approach 1 as n →∞, and so we are essentially adding 1 infinitely many times. So the n+1 
series must diverge. This is summarized by the following theorem. P∞
Theorem 15.7. If the terms an do not approach 0 as n →∞, then diverges. n=1 an 

CAUTION. This point cannot be stressed enough: If the an do go to 0, that does not tell you anything P∞ 1 1about the series. For example, the series diverges even though → 0 as n →∞. n=1 n n 

The last type of series from this section is a geometric series. This is a series of the form 

∞X 
n 2 cr = c + cr + cr + . . . . 

n=0 

What this means is to get from one term of the series to the next, we just multiply by r, called the ratio. 
An example would be 

∞X 1 1 1 
= 1 + + + . . . . 

2n 2 4 
n=0 

To get from one term to the next, we multiply by r = 1/2. Another example would be 

∞X 5 5 5 5 
= + + + . . . ,

3n 35 36 37 
n=5 

where the ratio here is now r = 1/3. 
The sums of geometric series are summarized in the following theorem: 

Theorem 15.8. (1) The finite sum 

NX N+1)c(1 − rn 2 cr = c + cr + cr + . . . = . 
1 − r 

n=0 

(2) If |r| < 1, then 
∞X cn cr = . 

1 − r 
n=0 
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Remark. Note that the sum in (1) is the N -th partial sum of the series in (2), and that the sum in (2) is the 
limit as N →∞ of the sum in (1). 

Remark. It is important that |r| < 1. If it is not, then the series diverges. Also, it is not crucially important 
that the sum starts at n = 0. The way to remember the sum in (2) is that it is the first term in the series 
divided by 1 − r. We will see this in the examples. P∞ 1Example 15.9. Find the sum of . n=0 3n 

Solution. This is just the series 
∞X 1 1 1 

= 1 + + + . . . . 
3n 3 9 

n=0 

So the first term is 1 and the ratio is 1/3. The formula in the theorem above gives 

∞X 1 1 3 
= = . 

3n 1 − 1 2 
n=0 3 P∞ � �n2Example 15.10. Find the sum of . n=5 3 

Solution. This is again geometric, but we start at n = 5, not n = 0. By listing out the terms, we see that 

∞ � �n � �5 � �6 � �7X 2 2 2 2 
= + + + . . . ,

3 3 3 3 
n=5 � �52and so our first term is and our ratio is 2/3. Since 2/3 < 1 the series will converge, and the sum is3 � �5 � �52 23 = 3 . 

1 − 2 3
3 

Remark. You could make the series above start at n = 0 by shifting everything by 5. This means everywhere 
you see an n, replace it by n + 5: 

∞ � � ∞ � � ∞ � �5 � �n n+5 nX X X2 2 2 2 
= = . 

3 3 3 3 
n=5 n=0 n=0 � �52 2Now we see that it is in the form of the theorem, that c = , and r = But remembering that it is just3 .3 

first term divided by 1 − r allows you to avoid such work if you want. P∞ � �2n+1−1Example 15.11. Find the sum of . n=1 2 

Solution. This is still geometric because we see the number to a power involving n. We could find the first 
term and r by listing out the terms, but we can also do it algebraically. To find r, we need it only to the n, 
not 2n, so write "� # ∞ � �2n+1 ∞ � �2n � �1 ∞ �2 n � � ∞ � � � �nX X X X−1 −1 −1 −1 −1 −1 1 

= · = · = · . 
2 2 2 2 2 2 4 

n=1 n=1 n=1 n=1 

1 = − 1Now we see that r = 1/4. Our first term can be found by just plugging in n = 1 to get − 1 · . Since2 4 8 
|r| < 1, the series converges, and it is 

−1 −18 = . 
1 − 1 6

4 

Now let’s look at examples from the entire section. P∞ 2n 
Example 15.12. Determine whether the series converges or not. If it does, find the sum. n=1 n 
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Solution. Whenever you see a series in this class, you really should check to see whether an → 0. In this 
case, 

2n 

lim = ∞, 
n→∞ n 

2x 
since limx→∞ = ∞ by L’Hopital’s rule. Therefore an does not go to 0, and the series diverges . x P∞ (−3)n 

Example 15.13. Determine whether the series n=−1 converges or diverges. If it converges, find the52n−1 

sum. 

(−3)n 

Solution. First, as n → ∞, → 0, and so we cannot use that test. This looks like a geometric series,52n+1 

but we have multiple n’s floating around. But we can write � � � �n n
(−3)n (−3)n −3 1 −3 

= = · = 5 . 
52n−1 52n5−1 5−152 25 

Now, in the sum 
∞ � �nX −3 

5 ,
25 

n=−1 � �−1−3the first term is 5 · and the ratio is −3/25. Since | − 3/25| < 1, the series converges, and the sum is25 � �−1−35 · 25 . 
1 − −3 

25 P∞ 
π1−4nExample 15.14. Determine whether the series converges. If so, find the sum. n=2 

Solution. As n →∞, π1−4n → 0 as the exponent is going to −∞ and π > 1. So we cannot use the divergence 
test. This is also geometric, and since � �n 

π1−4n = π · π−4n = π · 1 = π · 1 
,

π4n π4 

we get that our ratio is 1/π4 < 1. Also, our first term is π1−4(2) = π−7 . So the series converges and the sum 
is 

π−7 

1 − π 
1 
4 

. 

P∞ 52n 
Example 15.15. Determine whether the series converges or diverges. If it converges, find the n=1 4.99n 

sum. 

Solution. Here, as n →∞, the 52n will grow much faster than the 4.99n , so the an →∞, not 0, so the series 
automatically diverges. P∞ 2Example 15.16. Determine whether the series converges or diverges. If it converges, find the n=2 n2−1 
sum. 

2Solution. As n → ∞, n2−1 → 0, so we cannot use that test. Also unfortunate is the fact that this is not a 
geometric series, since we don’t see number to the n anywhere. But we notice we can factor the bottom as 
(n + 1)(n − 1), and a partial fraction decomposition will show that 

2 1 1 
= − , 

n2 − 1 n − 1 n + 1 

and so 
∞ ∞ � �X X2 1 1 

= − . 
n2 − 1 n − 1 n + 1 

n=2 n=2 
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This will be a telescoping series. To sum it, we find the partial sum: 

N � ������� � �� � X 1 1 11111 11 1 
SN = − =1 − + − + − +...+ − + − . 

n − 1 n +1 32435 N − 2 NN − 1 N +1 n=2 

Here, almost all the middle terms cancel, except the 1/2 from the second term and the −1/N from the 
11

second to last term (this would only be cancelled by the next term of the series, which is − .) So NN+2 

11 1 
SN =1+ −− ,

2 NN +1 

3 
and so SN → 

3 
as N →∞. Therefore the sum converges to . 2 2 

Remark. If you are unsure about which terms cancel, just list out a few partial sums and see, like S5 or S6. 
If we write out S5, we get 

��� �� �� �� � 
1 11 11 11 11 

S5 =1 − + − + − + − + − . 
3 24 35 46 57 

Here a lot cancels, and it simplifies to 
111 

S5 =1+ −− . 
267 

Similarly, ��� �� �� �� �� � 
1 11 11 11 11 11 

S6 =1 − + − + − + − + − + − ,
3 24 35 46 57 68 

and now the stuff left over is 1 + 
1 
− 

1 
− 

1 
. So you see that everything cancels except the last two minus 278 

1
terms, which in general would be − 

1 
and − NN+1 . 

P∞
Example 15.17. Determine whether the series √ n 

converges or diverges. If it converges, find the 24n2 −1 
sum. 

Solution. First, we need an → 0. So we want to calculate limn→∞ √ n 
2−1 . If we translate this to x’s, we 4n 

would get 
x 

lim √ . 
x→∞ 4x2 − 1 

Now we can use L’Hopital (we have ∞/∞), and doing so gives 
√ 

x LH 14x2 − 1 
lim √ = lim 4x = lim . 
x→∞ 4x2 − 1 x→∞ √ x→∞ 4x 4x2−1 

So L’Hopital’s rule did not help at all, so we can try something else. The dominant term trick tells us that 
n 1 √n √ should go to = To show this properly, we can factor out an n from the bottom: 2 2 . 

nn n 11 

4n2−14n

√ = q = q = q → �� 4n2 − 1 1 11 2 n2 4 − n 4 − 4 − 2 22 n nn 

as n →∞. Since an does not go to 0, the series diverges. 

Remark. The alternative method to find the limit of an above is to multiply the top and bottom by 
1 
(since n 

n is the dominant term): 

1 
n 1 111 n

√· = √ = q = q → 11
4n2 − 14n2 − 1 11 2 nn (4n2 − 1) 4 − n2 n2 

as n →∞. 
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16 Series with Positive Terms (11.3) 

In this section, you learn four tests to determine the convergence or divergence of series. They are outlined 
in the summary below: P∞ 1Summary 16.1. (1) p-test: The series converges if p > 1 and diverges if p ≤ 1. n=1 np 

(2) Integral Test: If an = f(n), where f(x) is positive, decreasing, and continuous for x ≥ c, thenP∞ R ∞ 
an converges if and only if f(x)dx converges. (This means the integral and series behave the n=c a 

same way in terms of convergence/divergence.) 

(3) Comparison Test: If there is a number M so that 0 ≤ an < bn for n ≥ M , then: P∞ P∞
(i) If bn converges, then so does n=1 n=1 an. P∞ P∞
(ii) If diverges, then so does bn. n=1 an n=1 

an(4) Limit Comparison Test: Let {an} and {bn} be positive sequences, and suppose L = limn→∞ bn 

exists. Then: P∞ P∞
(i) If 0 < L < ∞, then converges if and only if bn converges. n=1 an n=1P∞ P∞
(ii) If L = ∞ and converges, then so does bn. n=1 an n=1P∞ P∞
(iii) If L = 0 and bn converges, then so does n=1 n=1 an. 

Remark. (1) In addition to the geometric series we encountered in the previous section, this puts our test 
count up to five. 

(2) The comparison test for series is no different than that of integrals. The p-test is also the same as theR ∞ 1 dx p-test (this works because of the integral test). xp1 

Let us look at a few examples of each, then start looking at random series. P∞ 1Example 16.2. Use the integral test to determine whether the series converges or diverges. n=2 n ln(n) R ∞ R M1 1Solution. The integral test says to look at dx = limM→∞ dx. (Notice the bottom bound 
2 x ln(x) 2 x ln(x) 

is 2 because the first term of the series is n = 2.) We evaluate this using u-sub: u = ln(x), du = 1 dx, so x Z M Z ln(M) ln(M)1 1 
dx = du = ln |u| = ln | ln(M)| − ln | ln(2)|. 

x ln(x) u ln(2)2 ln(2) 

Notice we used the substitution to change our bounds from the first to second integral. Taking a limit as 
M → ∞, the first term goes off to ∞ and the second term is constant, so the integral diverges. Therefore 
the series diverges . 

2P∞ −nExample 16.3. Use the integral test to determine whether the series n=1 ne converges or diverges. R ∞ R M2 2−x −xSolution. Again, we look at the corresponding integral xe dx = limM→∞ xe dx. We again do
1 1 

2a u-sub, with u = −x , so du = −2xdx, and xdx = − 1 du:2 Z M Z −M2 
−M 21 1 1−x −M2 

xe 
2 

dx = − e udu = − (e u) = − (e − e −1). 
2 2 −1 21 −1 

−M2 −1As M →∞, e → 0, so the answer is 1 e . In particular, the integral converges, and therefore the series2 
converges . 

Remark. We are not claiming that the series converges to 1 e−1 , all we can say is that the series converges. 2 P∞ 1Example 16.4. Use both comparison tests to determine whether converges or diverges. n=1 n3 +n 
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P∞1 1Solution. (1) Direct Comparison: As n → ∞, the fraction behaves like 3 , and the series n n=1 n3 

converges by the p-test (p = 3). So we guess that it converges and we want to find something which is 
bigger. The usual trick is to try and get rid of the term we don’t care about (in this case, the n), and 

3 3we can because n + n ≥ n , meaning 
1 1 ≤ . 

n3 + n n3 P∞ 1Since converges, our original series converges . n=1 n3 

(2) Limit Comparison: In this case, the first thing to do is to still look at behavior. It behaves like 
11/n3 , but now instead of going through the entire comparison, we just say: let an = (our original n3+n 

1term) and let bn = 3 (the thing we want to compare it to). Then n 

1 3an 3+n nnlim = lim = lim .1n→∞ bn n→∞ n→∞ n3 + n3n

Dominant terms tell us that this limit should be 1. We could also use L’Hopital to show it: 

3 2x LH 3x LH 6x 
lim = lim = lim = 1. 
x→∞ x3 + x x→∞ 3x2 + 1 x→∞ 6x P∞ 1Since the limit exists and is not 0 or ∞, we know our series and either both converge or both 3n=1 n

diverge. Since the latter converges by the p-test, so does our series. P∞ 1Example 16.5. Use both comparison tests to determine whether converges or diverges. n=1 n+ln(n) P∞1 1Solution. (1) Direct Comparison: As n → ∞, the fraction behaves like , and the series n n=1 n 
diverges by the p-test (p = 1). So we guess that it diverges and we want to find something which is 
smaller. The usual trick is to try and get rid of the term we don’t care about (in this case, the ln(n)), 
but in this case it doesn’t work since removing it would make the denominator smaller, which is not 
what we want. Instead, we might try to replace ln(n) by n since that is the term we do care about, 
and we can since ln(n) ≤ n, so 

1 1 1 ≥ = . 
n + ln(n) n + n 2n P∞ 1Since diverges (p-test), our original series diverges . n=1 2n 

(2) Limit Comparison: The first thing to do is to still look at behavior. It behaves like 1/n, so let 
1 1 an = (our original term) and let bn = (the thing we want to compare it to). Then n+ln(n) n 

1 
an n+ln(n) n 

lim = lim = lim .1n→∞ bn n→∞ n→∞ n + ln(n)
n 

We could also use L’Hopital: 
x LH 1 

lim = lim = 1, 
x→∞ x + ln(x) x→∞ 1 + 1 

x P∞ 1since 1/x → 0. Since the limit exists and is not 0 or ∞, we know our series and either both n=1 n 
converge or both diverge. Since the latter diverges by the p-test, so does our series. 

√ 
cRemark. While it is true that ln(n) ≤ n (or even ln(n) ≤ n) for all n ≥ 1, we actually have ln(n) ≤ n 

afor any positive exponent c, as long as n is big enough. Also, we have n ≤ bn for any n large enough (here 
100 n .001a > 0 and b > 1). So, for example, n ≤ e provided n is large enough, and ln(n) ≤ n provided n is 

large enough. The next example shows how useful these can be P∞ ln(n)Example 16.6. Determine whether the series converges or diverges. n=1 n3/2 
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Solution. In terms of behavior, the ln(n) grows really slowly, so for all intents and purposes, this behaves P∞ 1like 1/n3/2 , and the series converges by the p-test with p = 3/2. Therefore, we guess that it3/2n=1 n
converges, and we can use comparison to prove it. We want to find something bigger which converges. We 
can’t just say 1/n3/2 , since it isn’t true that ln(n) ≤ 1 for all n. We also don’t want to use ln(n) ≤ n, because 

n 1this would mean we’re comparing it to 3/2 = 1/2 , which doesn’t converge (or rather, the corresponding 
n n 

1/4series does not converge). So instead, we could say if n is large enough, ln(n) ≤ n . Since comparison test 
only requires us to have an ≤ bn for all n ≥ M for some M , if M is the point at which ln(n) ≤ n1/4 is true, 
then 

1/4ln(n) n 1 ≤ = for n ≥ M. 
n3/2 n3/2 n5/4 P∞ 1Since converges by the p-test, our original series converges .5/4n=1 n

And now we look at examples without being told what test to use. P∞ 1Example 16.7. Determine whether the series converges or diverges. n=1 nn 

1Solution. The sequence goes to 0 very, very quickly, so we should guess that it converges. We cannot nn 
1integrate , so the integral test is out. It isn’t a p-series. We also might have a hard time finding a limit xx P∞1 1 1comparison here. So we are left with direct comparison. Luckily, if n ≥ 2, then ≤ n2 , and since nn n=1 n2 

converges by the p-test, our series converges by comparison. P∞ 2n+1Example 16.8. Determine whether the series converges or diverges. n=1 n3−n+1 

2Solution. This behaves likes 2n = n2 , and so we should guess this converges by p-test. To prove it, we don’t n3 

want to integrate that. We might try direct comparison, but it would be messy. But since we know it behave 
2n+1 2like 2/n2 , we could just use limit comparison. Let an = and bn = Then2 . n3−n+1 n 

2n+1 
an 2n3 + n2 

n3−n+1lim = lim = lim . 
n→∞ bn n→∞ 2 n→∞ 2n3 − 2n + 2 2n

We know this limit should go to 1. Instead of using L’Hopital a few times to prove it, let’s just multiply the 
top and bottom by 1/n3: 

3 2) 1(2n + n 2 + 1 
n nlim 
3 

= lim 2 2 = 1, n→∞ (2n3 − 2n + 2) 1 n→∞ 2 − +3 2 3n n n P∞ 2since all the terms with n in the denominator now go to 0. By limit comparison, since converges n=1 n2 

by the p-test, our series converges . P∞ n+1Example 16.9. Determine whether the series converges or diverges. n=1 2n−3 

n+1 1Solution. As n → ∞, → =6 0, and so the series diverges by the divergence test (see previous2n−3 2 

section). P∞ 2n 
Example 16.10. Determine whether the series converges or diverges. 

3n/2n=1 

√ 
Solution. The n’s in the exponents everywhere make us think geometric series. Since 3n/2 = ( 3)n , the 
series is 

∞ ∞ � �nX 2n X 2 
= √ . 

3n/2 3 
n=1 n=1 

√ 
Since 2/ 3 > 1, this is a geometric series where the ratio is > 1, and so it diverges . P∞ nExample 16.11. Determine whether the series converges or diverges. n=1 (n2+1)2 
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xSolution. Any number of techniques would work here, but we notice that we can integrate with a(x2+1)2 

simple u-sub, so let us use the integral test. We need to calculate Z ∞ Z M x x 
dx = lim dx. 

(x2 + 1)2 M→∞ (x2 + 1)2 
1 1 

1Let u = x2 + 1, du = 2xdx, so xdx = du. Also changing the bounds yields2 Z M Z M2+1 M2 � � 
+1x 1 du 1 1 1 1 1 

dx = = − · = − − . 
1 (x2 + 1)2 2 2 u2 2 u 2 2 M2 + 1 2 

1 1As M → ∞, the → 0, so the whole thing goes to . The integral converges, and therefore the seriesM 2+1 4 
converges . P∞ 3+sin(n)+(−1)n 

Example 16.12. Determine whether the series converges or diverges. 2n=1 n

Solution. As n → ∞, the sin(n) and (−1)n are inconsequential, as they are between −1 and 1. So this 
behaves like 3/n2 , and that series converges by the p-test. So we guess that this converges. We cannot 
integrate that, and limit comparison would actually not work the way we would like (try it and see). So 
we can use direct comparison. We want to find something bigger which converges. Since sin(n) ≤ 1 and 
(−1)n ≤ 1, we have 

3 + sin(n) + (−1)n 3 + 1 + 1 5 ≤ = . 
n2 n2 n2 P∞ 5Since converges by the p-test, our series converges . n=1 n2 P∞ 2n 

Example 16.13. Determine whether the series converges or diverges. n=1 en−n P∞ 2n P∞ � �nn 2Solution. As n →∞, the 2n dominates on top and e on the bottom. Since = converges n=1 en n=1 e 
(it is a geometric series and 2/e < 1), we guess that this thing converges. Again, we do not want to integrate 
that, and direct comparison is halted by the −n, since removing it would make the fraction smaller, which 

2n 
is not the way we want to go. So we try limit comparison instead, comparing it to . So en 

2n 
neen−nlim 2n = lim . 

n→∞ n→∞ en − n 
en 

To show this is 1, we use L’Hopital: 

x x xe e eLH LH
lim = lim = lim = 1. 
x→∞ ex − x x→∞ ex − 1 x→∞ ex P∞ 2n 

Since converges (geometric series with r < 1), our series converges by limit comparison.n=1 en P∞
Example 16.14. Determine whether the series cos(1/n) converges or diverges. n=1 

Solution. As n → ∞, 1/n → 0, so cos(1/n) → cos(0) = 1 6= 0. So the series diverges by the divergence 
test. 

17 Alternating Series (11.4) P∞ P∞
Summary 17.1. (1) A series converges absolutely if |an| converges. n=1 an n=1 P∞ P∞
(2) Theorem: If |an| converges, then converges. n=1 n=1 an P∞ P∞ P∞
(3) A series converges conditionally if converges but n=1 |an| diverges. n=1 an n=1 an 

(4) Alternating Series Test (a.k.a. Leibniz Test): Suppose {an} is a sequence of positive terms which isP∞
decreasing and converging to 0. Then (−1)n−1an converges. n=1 
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P∞
(5) Under the conditions of item (4), if S = (−1)n−1an, then the error from the N -th partial sum n=1 

satisfies |S − SN | < aN+1. P∞ P∞
Remark. (1) It is important to note that |an| diverging tells you nothing about n=1 n=1 an. 

(2) It is also crucial that, in item (4), the an → 0. If they don’t tend to 0, the series automatically diverges 
by the divergence test from 11.2. 

(3) It doesn’t much matter whether it is (−1)n−1 or (−1)n in item (4). 

First, a simple example: P∞ (−1)n−1 

Example 17.2. Consider the series . Show that the series converges conditionally, but not n=1 n 
absolutely. Then find N so that |S − SN | < 10−3 , where S is the sum of the series. P∞ (−1)n−1 

Solution. To check absolute convergence convergence, we need to see if converges or not. n=1 n 

Note X X∞ 
(−1)n−1 ∞ 

1 
= , 

n n 
n=1 n=1 

and this series diverges by the p-test. Therefore the series does not converge absolutely. 
1We can use the Alternating Series Test to prove it converges conditionally. Here, an = (you always let ann 

be the positive stuff without the (−1)n). Note that an > 0 for all n, and that an → 0. We also need {an}
to be decreasing, but an+1 < an since 1 < 1 . Therefore the conditions of ther theorem are satisfied, and n+1 nP∞ P∞ (−1)n−1 

so (−1)n−1an = converges conditionally. n=1 n=1 n 
For the last part of the question, item (5) in the summary says that |S − SN | < aN +1. In this example, that 

1 1 means |S − SN | < . Since we want |S − SN | < 10−3 , we can just set < 10−3 , and solve for N .N+1 N+1 
Solving, we get 

1 
< 10−3 =⇒ N + 1 > 1000 =⇒ N > 999. 

N + 1 

So, for example N = 1000 works. What this says is that the 1000-th partial sum is within 10−3 of the actual 
value. P∞ (−1)n nExample 17.3. Determine whether the series converges absolutely, conditionally, or not at n=1 n+1 
all. 

nSolution. Note that, as n →∞, n+1 → 1, since 

x LH 1 
lim = lim = 1 
x→∞ x + 1 x→∞ 1 

(−1)n nby L’Hopital’s rule. In particular, the general term 6→ 0, so the series diverges by the divergence test. n+1 P∞ (−3)n 

Example 17.4. Determine whether the series converges absolutely, conditionally, or not at all. n=1 πn 

Solution. In this case, the general term does go to 0 since π > 3, so we at least have the chance of convergence. 
We first check absolute convergence. We need to check whether 

∞ ∞X X 3n(−3)n 

= 
πn πn 

n=1 n=1 P∞ 3n 
converges or not. But is a geometric series with ratio 3/π < 1, so it will converge. Therefore, our n=1 πn 

original series converges absolutely . P∞ (−1)n 

Example 17.5. Determine whether the series √ converges absolutely, conditionally, or not at n=1 n2+1 
all. 
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Solution. Again, the general term goes to 0, so we cannot use the divergence test. To check absolute 
convergence, note 

∞ ∞X X(−1)n 1 √ = √ . 
n2 + 1 n2 + 1 

n=1 n=1 

This behaves like 1/n, so it should diverge. To show it, we could use either direct or limit comparison: 

(1) Direct: We can’t just remove the 1 from the denominator, since this would make our fraction bigger. 
Instead, we try and get the 1 in terms of the dominant term. Since 1 ≤ n2 (as n ≥ 1 in the series), we 
can say 

1 1 1 1 1 √ ≥ √ = √ = √ · . 
n2 + 1 n2 + n2 2n2 2 n 

The inequality is justified by the fact that we made the denominator bigger by replacing the 1 by theP∞ 
n2 . Since √1 · 1 diverges by the p-test (p = 1), our series diverges by comparison.n=1 n2 

1(2) Limit comparison: Compare to . Note n 

1√ nn2+1lim = lim √ . 
n→∞ n→∞1 n2 + 1 n 

To evaluate this, we can multiply the top and bottom by 1/n: 

1 n · 1 1 nlim √ = lim q = lim q = 1. 
1 √ n→∞ n→∞ n→∞n2 + 1 · 1 1 
n n2 + 1 · 1 + n2 n2 P∞ 1Since diverges, so does our series. n=1 n 

All this shows is that it does not converge absolutely. To check conditional convergence, we can use the 
1Leibniz test. Let an = n2+1 (again, the stuff without the (−1)n). Then an > 0. To see an → 0, note that 

by using the same manipulation as in the Limit Comparison test above, 

1 · 1 1 0 n nlim √ = lim q = = 0. 
n→∞ n→∞n2 + 1 · 1 1 1 

n 1 + n2 

Finally, we need an+1 < an. But this is true, since p p 1 12(n + 1)2 > n =⇒ (n + 1)2 + 1 > n 2 + 1 =⇒ (n + 1)2 + 1 > n2 + 1 =⇒ p < √ . 
(n + 1)2 + 1 n2 + 1 

By the Leibniz test, the series converges conditionally . 

18 Ratio and Root Test (11.5) 

The last two tests are the ratio and root test: 

Summary 18.1. (1) Ratio Test: Let ρ = limn→∞ 
an+1 (provided the limit exists). Then an P 

(i) If ρ < 1, then an converges absolutely. P 
(ii) If ρ > 1, then an diverges. 

(iii) If ρ = 1, test is inconclusive. p
(2) Root Test: Let L = limn→∞ 

n |an| (provided the limit exists). Then: P 
(i) If L < 1, then an converges absolutely. 
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P 
(ii) If L > 1, then an diverges. 

(iii) if L = 1, the test is inconclusive. 

Remark. For ratio test, the biggest clues are factorials and exponentials. For root test, you are looking for 
n’s in the exponents. 

2P∞ nExample 18.2. Determine whether the series converges or diverges. n=1 2n 

2 nSolution. Here we can use the ratio test. If an = , then2n 

(n+1)2 

an+1 2n+1 (n + 1)2 2n (n + 1)2 

= = · = . 
n2 2n+1 n2 2n2an 2n 

As n → ∞, you can use L’Hopital’s rule to show the limit is 1/2. So ρ = 1/2 < 1, meaning the series 
converges by the ratio test. P∞ (−2)n 

Example 18.3. Determine whether the series converges absolutely, conditionally, or neither. n=1 (2n)! 

Solution. The factorials and exponentials tell us to try ratio test. Again, 

(−2)n+1 

(−2)n+1an+1 (2(n+1))! (2n)! 2 
= = · = ,

(−2)n an (2n + 2)! (−2)n (2n + 1)(2n + 2) 
(2n)! 

(2n)! 1since the absolute value removed the − sign and = . Now, as n → ∞, this goes to 0,(2n+2)! (2n+2)(2n+1) 

since multiplying the top and bottom by 1/n2 gives: 

22 n2 0 
= → = 0.24n2 + 6n + 2 4 + n 

6 + n2 4 

Therefore ρ = 0 < 1, so the series converges absolutely. � �nP∞ 2nExample 18.4. Determine whether (−1)n converges absolutely, conditionally, or not at all. n=1 n+1 � �n 
2nSolution. The n in the exponent tells us to try root test. Since |an| = , taking n-th roots gives n+1 

√ 2nn an = . As n →∞, L’Hopital gives this limit as 2, so L = 2 > 1 means the series diverges . n+1 P∞ rExample 18.5. Show for any r, the series 
n 

converges absolutely.n=1 nn 

|r|n √ |r|nSolution. Here, |an| = , so an = . As n → ∞, this goes to 0, since |r| is some number. Therefore nn n 
L = 0 < 1, so the series will converge absolutely. 

Remark. This finishes off the tests for convergence. To summarize we have: 

(1) Divergence Test: Make sure an → 0. 

(2) Positive terms: 

(a) p-Test: This you can only use for 1/np, so should be very recognizable. 

(b) Integral Test: If you feel like you can integrate the function, use this test. Make sure the function 
is positive (no (−1)n’s floating around). 

(c) Comparison Test: This doesn’t really have a distinguished look, but is really the only one which 
doesn’t, so you can get to this by process of elimination. 

2 n +n+1(d) Limit Comparison: Use this if you can determine behavior easily (e.g. n3+1 ). It won’t always 
help, but you can try it. 
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(3) Leibniz Test: This must be an alternating series, and you should only do this after you check for 
absolute convergence. 

(4) Ratio Test: Exponentials and factorials are big clues here (as in the examples above). 

(5) Root Test: When you have n’s in the exponents, you can try this test. 

It is really important you practice determining convegence of random series, since practice is the only way 
to make you more comfortable identifying which test to use. 

19 Taylor Polynomials (9.4) 

Now you will see why all your work for infinite series was worth it: Taylor Series. First, we need Taylor 
polynomials. 

Summary 19.1. Let f(x) be some function. 

(1) The n-th Taylor polynomial centered at x = a is the polynomial 

f 00(a) f 000(a) f (n)(a) X f (k)(a) 
n 

Tn(x) = f(a)+f 0(a)(x−a)+ (x−a)2+ (x − a)3+. . .+ (x − a)n = (x−a)k . 
2! 3! n! k! 

k=0 

(2) If a = 0, Tn(x) is called a Maclaurin polynomial. 

(3) If f (n+1)(x) exists and is continuous, then the error for Tn(x) is 

|x − a|n+1 

|Tn(x) − f(x)| ≤ K ,
(n + 1)! 

where K is a number with |f (n+1)(u)| ≤ K for all u between a and x. 

Remark. What you’re doing with Taylor polynomials is approximating some (presumably complicated) 
function by polynomials, which are easier to understand. 

xExample 19.2. If f(x) = e , find: 

(a) T3(x) centered at a = 0 

(b) The maximum possible error for |T3(.1) − f(.1)| 

(c) Tn(x) centered at a = 0 

Solution. (a) To find the third Maclaurin polynomial, we need three derivatives. In this case, f(x) = 
f 0(x) = f 00(x) = f 000(x) = ex . So in each case, when we plug in x = 0, we get f(0) = f 0(0) = f 00(0) = 
f 000(0) = 1. So using the formula from (1) in the summary with n = 3, we get 

2 3x x 
T3(x) = 1 + 1(x − 0) + 

1
(x − 0)2 + 

1
(x − 0)3 = 1 + x + + . 

2! 3! 2 6 

(b) We are using the error bound. Here, a = 0, and x will always be the value you’re trying to approximate. 
Since we’re using T3(x) to approximate f(.1), x = .1 in this scenario. Finally, we need K. By definition 
K is a number with |f (4)(u)| ≤ K between a and x, so in this case on [0, .1]. This is similar to finding 

xK for trapezoidal rule, except you use a different derivative. In this case, |f (4)(x)| = |ex| = e , and on 
x[0, .1], the largest this can be is at x = .1 since e is increasing. So 

|f (4)(x)| ≤ e .1 ≤ e 1 ≤ 3, 
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so we can use K = 3. (Notice we could have used K = e.1 if we wished, this was just done to illustrate 
that it doesn’t matter whether we choose the smallest value of K or not.) So using the error bound 
with K = 3, x = .1, a = 0, and n = 3 in the formula from (2) in the summary above, we get 

(.1 − 0)4 

|T3(.1) − f(.1)| ≤ 3 . 
4! 

(c) To find Tn(x), we need to somehow find a formula for f (n)(a) in terms of n. This will probably be the 
hardest thing from this section, only because it involves some pattern recognition. In this case, it is 

x 0easy, since all derivatives are e , meaning f (n)(0) = e = 1. Therefore, 

n nX f (k)(a) X 1 kTn(x) = (x − a)k = x . 
k! k! 

k=0 k=0 

1Example 19.3. Consider f(x) = Find:(x+1)2 . 

1(a) T2(x) centered at a = 1, and use it to approximate 2.12 

(b) Find the maximum possible error from the approximation in (a) 

(c) Find Tn(x) for all n. 

Solution. (a) To find T2(x), we take two derivatives: 

2 2 · 3 
f 00(x) =f 0(x) = − , ,

(x + 1)3 (x + 1)4 

1 6 3so f(1) = , f 0(1) = − 2 = − 1 , and f 00(1) = = . Therefore4 8 4 16 8 

f 00(1) 1 1 3/8 1 1 3 
T2(x) = f(1)+f 0(1)(x−1)+ (x−1)2 = − (x−1)+ (x−1)2 = − (x − 1) + (x − 1)2 . 

2 4 4 2 4 4 16 

1To approximate 2.12 , notice that this is f(1.1). Therefore, we plug in x = 1.1 into T2(x): 

1 1 3 
f(1.1) ≈ T2(1.1) = − (1.1 − 1) + (1.1 − 1)2 . 

4 4 16 

(b) To approximate the error, we use the error bound. We need to find K such that |f 000(x)| ≤ K for all 
x ∈ [1, 1.1] (i.e. for all x in the interval between a and the value you’re approximating). In this case, 

2 · 3 · 4 24 |f 000(x)| = − = . 
(x + 1)5 (x + 1)5 

This is a decreasing function, so it will have its maximum at the left endpoint, i.e. when x = 1, so K 
can be taken to be 

24 24 3 
K = = = . 

(1 + 1)5 32 4 

(Again, we could take any higher value as well.) Using the error bound with K = 3 , n = 2, a = 1, and 4 
x = 1.1 gives 

3 (1.1 − 1)3 

|T2(1.1) − f(1.1)| ≤ · . 
4 3! 
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(c) To find a formula for Tn(x), we need a general term for f (k)(a) = f (k)(1). We have two derivatives 
above. Take a few more and see that 

1 2 2 · 3 2 · 3 · 4 2 · 3 · 4 · 5 
f(1) = , f 0(1) = − , f 00(1) = , f 000(1) = − , f (4)(1) = , . . . . 

22 23 24 25 26 

Identify the changing parts. We see an alternating ±, so we will get (−1)k or (−1)k+1 . If k = 0, the 
term is positive, so we take (−1)k . In the denominator, we have a power of 2. For the 0-th derivative, 
the power is 2. In the first derivative, the power is 3, so in each case, the power is one more than 
the derivative we’re taking. So we get 2k+2 in the denominator. On top, we see factorials. In the 
second derivative, we have 3!. In the third derivative, it is 4!, so in general, it will be (k + 1)!. So, 

(−1)k (k+1)!f (k)(1) = . Using the general formula for the Taylor formula, we get,
2k+2 

n nX Xf (k)(1) (−1)k(k + 1)! 1 
Tn(x) = (x − 1)k = · (x − 1)k = 

2k+2k! k! 
k=0 k=0 

nX (−1)k(k + 1) 
(x − 1)k . 

2k+2 
k=0 

Example 19.4. If f(x) = sin(2x), find T3(x) centered at a = π/4, and then find Tn(x) for any n. 

Solution. (a) To find T3(x), first take three derivatives of f(x): 

f 0(x) = 2 cos(2x), f 00(x) = −22 sin(2x), f 000(x) = −23 cos(2x). 

So at a = π/4, we have 

f 000(π/4) = 0,f(π/4) = sin(π/2) = 1, f 0(π/4) = 0, f 00(π/4) = −4, 

since cos(π/2) = 0. So 

f 000(π/4)f 00(π/4) 4 
T3(x) = f(π/4)+f 0(π/4)(x−π/4)+ (x−π/4)2+ (x−π/4)3 = 1− (x−π/4)2 = 1 − 2(x − π/4)2 . 

2! 3! 2! 

(b) To find Tn(x), we need a formula for f (n)(π/4). We have three derivatives above, and already we notice 
that every other derivative will be 0. We can calculate a couple more derivatives: 

f (4)(x) = 24 sin(2x), f (5)(x) = 25 cos(2x), f (6)(x) = −26 sin(2x), 

and so on. So at a = π/4, the sequence of derivatives we have is: 

1, 0, −22 , 0, 24 , 0, −26 , 0, . . . . 

Now, you have to deal with the fact that we only have nonzero terms in the even slots (namely, 
k = 0, 2, 4, 6, . . .). Even numbers have the form 2k, for k an integer, and odd numbers have the form 
2k + 1, where k is some integer. The only nonzero derivatives come from f (2k)(π/4), so let’s focus on 
the even terms: 

1, −22 , 24 , −26 , . . . . 

We see the alternating ±, so we’re going to get a (−1)k or (−1)k+1 . If k = 0, we have a positive 
term, so that tells us to take the (−1)k . We then see we have 2 to an appropriate power. In the 0-th 
derivative, the power is 0. In the second derivative, the power is 2, in the fourth derivative the power 
is 4, so in the 2k-th derivative, the power will just be 2k. So 

· 22kf (2k)(π/4) = (−1)k . 

Again, all the odd derivatives are 0 at π/4. So instead of giving the polynomial Tn(x), we can give the 
polynomials T2n(x) and T2n+1(x). The formula for T2n(x) is 

f 00(π/4) f (2n)(π/4)
T2n(x) = f(π/4) + f 0(π/4)(x − π/4) + (x − π/4)2 + . . . + (x − π/4)2n . 

2! (2n)! 
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All the odd terms are 0, and we have a formula for f
(2n)

(π/4), namely f
(2n)

(π/4) = (−1)
n · 22n . So 

(−1)
n · 22n 

T2n(x)=1 − 2(x − π/4)
2 
+ ... +(x − π/4)

2n 
. 

(2n)! 

This only gives the even order Taylor polynomials. We should also give the odd order ones. But 
the next Taylor expansion, namely T2n+1(x), will be the same as T2n(x) since T2n+1(x)= T2n(x)+ 
f
(2n+1)

(π/4) 
(x − π/4)

2n+1 and f
(2n+1)

(π/4)=0, so (2n+1)! 

T2n(x)= T2n+1(x). 

So this describes every Taylor polynomial. 

(−1)
n · 22n 

T2n(x)= T2n+1(x)=1 − 2(x − π/4)
2 
+ ... +(x − π/4)

2n 
. 

(2n)! 

Example 19.5. Consider f(x) = ln(1 − x) with a =0. Find T2(x), Tn(x), and then find n so that 
| ln(.8) − Tn(.2)| < 10−3 . 

Solution. (a) To calculate T2(x), we take two derivatives of f(x): 

1 
f00(x)= − 

1 
f0(x)= − ,. 

1 − x (1 − x)2 

Here, a = 0, so we observe 

f(0) = ln(1) = 0,f0(0) = −1,f00(0) = −1. 

Therefore, 
2

f00(0) x 
T2(x)= f(0) + f0(0)(x − 0)+ (x − 0)

2 
= −x − . 

2! 2 

(b) Tofind Tn(x), we need a general formula for the k-th derivative of f(x), f
(k)
(x). We’ve taken two 

derivatives, let’s take a few more to see the pattern, 

1 
f00(x)= − 

1 
f000(x)= − 

1 · 2 f
(4)
(x)= − 

1 · 2 · 3 f0(x)= − ,,, . 
1 − x (1 − x)2 (1 − x)3 (1 − x)4 

We begin to see a pattern for the derivatives. We always have a minus sign. In the bottom, the power 
of (1 − x) is going up by 1 each time. For the first derivative, the power is 1, for the second, the power 
is 2, for the third derivative it is 3. So for the k-th derivative, the power of (1 − x) will be k. For 
the numerator, we see a factorial pattern emerging. In the third derivative we have 2!, in the fourth 
derivative, it is 3!, so for the k-th derivative, it will be (k − 1)!. But notice this only works for the 
derivatives, since the function itself does not follow this pattern (i.e. ln(1 − x) does not follow this 
pattern). So we can only say 

(k − 1)!
f
(k)
(x)= − ,k ≥ 1. 

(1 − x)k 

So at 0, 
(k − 1)!

f
(k)
(0) = − = −(k − 1)!,k ≥ 1. 

(1 − 0)k 

P f 
(k)

n (a)
We know Tn(x)= (x − a)

k , but we only have a formula for f
(k)
(a) if k ≥ 1. Sowe can k=0 k! 

write nX f(k)
(a)

Tn(x)= f(0)+ (x − a)
k 
,

k! k=1 

52 



- I - - -I 

- - - - - -

where we just isolate the k = 0 term and then start the sum from k = 1. (Note: We’re doing this only 
because our k=0 term did not follow the pattern.) Since f(0) = 0, we have 

n n 2 3 nX X−(k − 1)! 1 x x xk kTn(x) = 0 + x = − x = −x − − − . . . − . 
k! k 2 3 n 

k=1 k=1 

(c) So this is an error bound problem, observe that ln(.8) = f(.2), so we’re trying to find n so that 
|f(.2) − Tn(.2)| < 10−3 . Remember that the error bound for this would be 

(.2 − 0)n+1 

|f(.2) − Tn(.2)| ≤ K ,
(n + 1)! 

where |f (n+1)(x)| ≤ K for x ∈ [0, .2]. We already found a formula for the k-th derivative, namely 
f (k)(x) = − (k−1)! 

(1−x)k , so 
(n + 1 − 1)! n! 

f (n+1)(x) = − = − 
(1 − x)n+1 (1 − x)n+1 

(just plug in k = n + 1 everywhere in the formula). So 

n! |f (n+1)(x)| = . 
(1 − x)n+1 

This is going to be biggest when 1 − x is smallest, so at x = 0. So 

n! n! ≤ = n!. 
(1 − x)n+1 (1 − 0)n+1 

So we can let K = n!, and then the error bound becomes 

(.2 − 0)n+1 .2n+1 .2n+1 1 
K = n! = = 

(n + 1)! (n + 1)! n + 1 (n + 1)5n+1 

1 as .2 = . So we want to find n so that5 

1 1 
< 10−3 = . 

(n + 1)5n+1 1000 

We can’t solve for n explicitly, but we can plug in some numbers until we find it: If n = 2, then 
1 1 1 1 1 1 = = 375 , so this is no good. If n = 3, then = < n = 4 is the(n+1)5n+1 3·53 (n+1)5n+1 4·54 1000 , so 

one we want. 

There are some Taylor polynomials which are just good to know: P knx x(1) e , a = 0 → Tn(x) = k=0 k! 

2k+1Pn (−1)k x(2) sin(x), a = 0 → T2n+1(x) = T2n+2(x) = k=0 (2k+1)! 

2kPn (−1)k x(3) cos(x), a = 0 → T2n(x) = T2n+1(x) = k=0 (2k)! 

20 Power Series (11.6) P∞
Definition 20.1. A power series about c is a series of the form (x − c)n , where the an are numbers. n=0 an P∞ nExample 20.2. The infinite series is a power series about 0, with the an = 1 for all n. n=0 x P∞ n!Example 20.3. The sum (x − 5)2n is a power series about 5 (even though the exponent is 2n n=0 3n 

instead of n.) 
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A general fact is the following: 

Proposition 20.4. Let F (x) be a power series about c. Then there exists 0 ≤ R (called the radius of 
convergence; may be infinite) so that F (x) converges absolutely for |x −c| < R and diverges for |x −c| > R. 

You usually get R using the ratio test: P∞ xExample 20.5. Determine the radius of convergence of the power series 
n 
. n=0 2n 

xSolution. We will use the ratio test with an = 
n 
. We compute n 

n+1 x n+1an+1 2n+1 x 2n x x 
ρ = lim = lim = lim · = lim = . xn 

n→∞ an n→∞ n→∞ 2n+1 xn n→∞ 2 2
2n 

|x| |x|Now, ratio test says that we will converge absolutely if ρ < 1, and since ρ = 2 , we need < 1, or |x| < 2.2 

Since this is the same as |x − 0| < 2 and our center is 0, the radius of convergence is R = 2 . 

Now, there is a slight difference between radius of convergence and interval of convergence. We found, 
for example, that the radius of convergence for the previous example is 2. But the interval of convergence is 
the actual interval of x values for which the series converges. 

Example 20.6. Determine the interval of convergence for the series in the previous problem, namely 
nP∞ x 

n=0 2n . 

Solution. So you first find the radius of convergence, which we said was 2. So we know we will converge if 
|x| < 2, i.e. if −2 < x < 2. Moreover, if |x| > 2, then ρ > 1 in the previous problem, and radius test tells us 
we will diverge. So the only question at the moment is whether the series converges at the endpoints, namely 
±2 (this would correspond to ρ = 1 in the ratio test, which we know is inconclusive). So check convergence 
at the endpoints, we plug in x = 2 and x = −2 into the series, and determine whether this infinite series 
converges or diverges. For example, if x = 2, then the power series is 

∞ ∞X 2n X 
= 1,

2n 
n=0 n=0 

which diverges by the divergence test (as the general term, 1 is not going to 0). So we do not converge at 
x = 2. Similarly, at x = −2, the power series becomes 

∞ ∞X X(−2)n 

= (−1)n ,
2n 

n=0 n=0 

which also diverges by the divergence test. Therefore the series does not converge at either endpoint, and 
so the interval of convergence is precisely −2 < x < 2 . 

So there are two steps to find the interval: find the radius of convergence, and check the endpoints. P∞ 8n 
Example 20.7. Determine the radius and interval of convergence for the series (x − 2)n 

n=1 n 

8n 
Solution. First, identify the center. In this case, it is 2. We use the ratio test with an = (x − 2)n to getn 

an+1
ρ = lim 

n→∞ an 

8n+1(x−2)n+1 

n+1 = lim 
8n(x−2)n 

n→∞ 
n 

8n+1(x − 2)n+1 n 
= lim · 

n→∞ n + 1 8n(x − 2)n 

n 
= lim 8(x − 2) 

n→∞ n + 1 
n 

= |8(x − 2)| lim 
n→∞ n + 1 

= 8|x − 2|, 
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n 1since limn→∞ = 1. So for convergence, we need ρ = 8|x − 2| < 1, so |x − 2| < . Therefore the radius of n+1 8 

1 
convergence is R = . To find the interval, right now we have convergence for |x − 2| < 1/8, which means 

8 
1 1 15 17 − < x − 2 < =⇒ < x < ,
8 8 8 8 

where this last inequality was gotten by adding 2 to every side in the first inequality. So the only question 
is whether we have convergence at x = 15/8 and x = 17/8. Plugging the latter point into the series gives 

∞ � �n ∞ � �n ∞X 8n X 8n X17 1 1 − 2 = = . 
n 8 n 8 n 

n=1 n=1 n=1 

But this series diverges by the p-test, so we do not converge at x = 17/8. At x = 15/8, we have 

∞ � �n ∞ � �n ∞X 8n X 8n X15 1 (−1)n 

v − 2 = − = , 
n 8 n 8 n 

n=1 n=1 n=1 

and this series does converge by the Leibniz test (you should show this). Therefore we do have convergence 
15 17 

at x = 15/8, and so the interval of convergence is ≤ x < . 
8 8 P∞

Example 20.8. Determine the radius and interval of convergence for the series n=1 n!(2x + 1)n . 

Solution. Again, first identify the center. In this case, the center is −1/2 since this is what makes the 2x +1 
equal to 0. So we want R so that the series converges for |x − 1 | < R. Again, using the ratio test with2 
an = n!(2x + 1)n gives 

an+1
ρ = lim 

n→∞ an 

(n + 1)!(2x + 1)n+1 

= lim 
n→∞ n!(2x + 1)n 

= lim |(n + 1)(2x + 1)|
n→∞ 

= |2x + 1| lim n + 1. 
n→∞ 

Now, as long as x =6 −1/2 (i.e. 2x + 1 =6 0), that limit will be infinite, so if x 6= −1/2, the series is 
guaranteed to diverge (since ρ cannot be less than 1). We do, however, have convergence at x = −1/2 (since 
we always have convergence at the center). So the interval of convergence is just x = −1/2, and the radius 
of convergence is 0. 

Remark. If, when doing ratio test, you get a limit of 0 regardless of x, then the radius of convergence would 
be infinite and the series would converge for all x. 

2nP∞ xExample 20.9. Determine the radius and interval of convergence for the series n=0 (−3)n 

2n xSolution. Here, the center is a = 0. Using ratio test with an = gives (−3)n 
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an+1
ρ = lim 

n→∞ an 
2(n+1)x 

(−3)n+1 

= lim 
x2n 

n→∞ 
(−3)n 

2n+2x (−3)n 

= lim · 
n→∞ (−3)n+1 x2n 

2x 
= lim 

n→∞ −3 
2x 

= . 
3 

2 x 2This will converge if ρ < 1, so if < 1, or x < 3. It is important that you realize the radius is not3 
3 here, since the radius is given by an inequality of the form |x| < R (since the center here is 0). So we 

√√ √ √ 
2notice x < 3 =⇒ |x| < 3 (since x2 = |x|). So R = 3 . The interval we have so far is |x| < 3, or √ √ √ √ 

− 3 < x < 3. We need to check convergence at x = ± 3. At x = 3, the series is 

∞ 2n ∞ ∞X √ X 3n X3 
= = (−1)n ,

(−3)n (−3)n 
n=0 n=0 n=0 

√ 
which diverges by divergence test. So we do not have convergence at x = 3. At the other endpoint, we get 

∞ ∞ ∞X (−
√ 
3)2n X 3n X 

= = (−1)n ,
(−3)n (−3)n 

n=0 n=0 n=0 

which again diverges. So we do not have convergence at either endpoint, and so the interval of convergence 
√ √ 

is − 3 < x < 3 . 

Remark. In general, when checking the endpoints, you will get an infinite series which requires a convergence 
test from sections 11.2-11.5, so be prepared to use those. 

We can use the formula for a sum of a geometric series to allow us to write some functions as power P∞1 n cseries. Consider the function f(x) = . This looks like the sum of a geometric series n=0 cr = ,1−x 1−r 
1where c = 1 and r = x. So we can treat 1−x as the sum of the geometric series, and write 

∞X1 2 n n = 1 + x + x + . . . + x + . . . = x . 
1 − x 

n=0 

This will be convergent when |r| = |x| < 1. This will allow us to find the power series of other functions. 

1Example 20.10. Find a power series centered at 0 for f(x) = 1−3x . What is the radius of convergence? 

Solution. Again, we can treat this as a geometric series with first term 1 and ratio r = 3x. So 

∞X 
2 n n3n 

1 − 3x 
= 1 + 3x + (3x)2 + . . . + (3x)n + . . . = 1 + 3x + 9x + . . . + 3n x + . . . = x . 

n=0 

This will be convergent if |r| = |3x| < 1, meaning |x| < 1/3, so the radius of convergence is 1/3. 

1Example 20.11. Find a power series for f(x) = 3+x3 centered at 0. What is the radius of convergence? 
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Solution. Here, we can’t quite use the geometric series formula because of the 3 in the denominator. If it 
were a 1, then we could, so we can factor out a 3 from the denominator: 

1 1 1 1 
f(x) = = � 3 � = · 3 . 3 + x3 3 1 + x 3 1 + x 

3 3 

Now the second term in the product can be interpreted as the sum of a geometric series with first term 1 
and ratio r = −x3/3, so 

∞ � �n ∞ ∞X 3 X 3n X 3n1 x 1 (−1)nx (−1)nx 
f(x) = − = = ,

3n 3n+13 3 3 
n=0 n=0 n=0 

where in this last step we brought the 1/3 into the sum, giving us an extra factor of 3 in the denominator.√ √ 
This will converge if | − x3/3| < 1, so |x3| < 3, or |x| < 3 3. So the radius of convergence is 3 3. 

xExample 20.12. Find a power series for f(x) = centered at 0. What is the radius of convergence? 2+x 

Solution. Again, the two in the denominator is an issue, so we factor it out: 

x 1 x 
f(x) = = · . 

2 + x 2 1 + x 
2 

Now the second term in the product is the sum of a geometric seires with first term x and ratio −x/2, so 
∞ ∞ ∞X � �n X n X n+11 x 1 (−1)nx (−1)nx 

f(x) = x − = x · = . 
2n+12 2 2 2n 

n=0 n=0 n=0 

This will converge if | − x/2| < 1, so |x| < 2. Therefore the radius is 2. 
1Example 20.13. Find a power series for f(x) = centered at x = 1. What is the radius of convergence? 2+x 

Solution. Now the center is not 0, so we must be clever. In theory, it would be good if we had something like 
1 , since then we could use the geometric series formula with r = −(x − 1), giving us a power series1+(x−1) 

around 1. However, we don’t have this. But, we can always manipulate the function so that we do have it: 

1 1 1 
f(x) = = = . 

2 + x 2 + x − 1 + 1 3 + (x − 1) 

Now we have a ratio involving x − 1, so we’re in business. Again, factor out the 3 to put a 1 in that spot: 

1 1 
f(x) = · . 

3 1 + x−1 
3 

So now we have a geometric series with ratio − x−1 and first term 1, so3 

∞ � �n ∞ ∞X X X1 −(x − 1) 1 (−1)n(x − 1)n (−1)n(x − 1)n 

f(x) = = = . 
3n+13 3 3 3n 

n=0 n=0 n=0 

x−1This will converge if < 1, so |x − 1| < 3, and the radius of convergence is 3.3 

The last topic from this section is differentiation and integration of power series. What the theorem says 
is that this can be done term by term: P∞
Theorem 20.14. Suppose F (x) = a0 + a1(x − c) + a2(x − c)2 + . . . = (x − c)n is a power series n=0 an 

with radius of convergence R. Then 
∞X 

F 0(x) = a1 + 2a2(x − c) + 3a3(x − c)2 + . . . = nan(x − c)n−1 , 
n=1 

and Z ∞ 
a1 

X an 
(x − c)n+1F (x)dx = C + a0(x − c) + (x − c)2 + . . . = C + ,

2 n + 1 
n=0 

where C is any constant. Moreover, the radius of covergence is still R (though the interval of convergence 
may change). 
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2xExample 20.15. Find a power series for f(x) = x2+1 around 0, and use it to find a power series for 
F (x) = ln(x2 + 1) around 0. What is the radius of convergence for each? 

Solution. To find a power series for f(x), we use the method above: this is the sum of a geometric series 
with first term 2x and ratio −x2 , so 

∞ ∞X X 
2n+12)nf(x) = 2x(−x = 2(−1)n x . 

n=0 n=0 

This will converge if |− x2| < 1, so |x|2 < 1, meaning |x| < 1, so the radius of convergence is 1 for this series. 
2xNext, we observe that ln(x2 + 1) is an antiderivative of , i.e. x2+1 Z 

2x 
= ln(x 2 + 1) + C. 

x2 + 1 

You can check this using u-sub. So we can integrate the power series we got for f(x) to get one for F (x). 
Using the formula from the theorem, we get 

∞X 2 · (−1)n 
2n+2F (x) = C + x 

2n + 2 
n=0 

2n+1 1(since the antiderivative of x is x2n+2). To solve for C, notice that if x = 0, then F (0) = 0.2n+2 
Plugging in x = 0 to both sides gives 

∞X 2(−1)n 

02n+20 = F (0) = C + = C, 
2n + 2 

n=0 

so C = 0, and 
∞X 2 · (−1)n 

2n+2F (x) = x . 
2n + 2 

n=0 

By the theorem, the radius of convergence stays 1 for this function as well. 

1 1Example 20.16. Use the power series for f(x) = to get the power series for (1−x)2 , and then use it to1−x 
1find the power series for What is the radius of convergence for each? (1−x2)2 . 

Solution. The power series for f(x) is 
∞X 

nf(x) = x . 
n=0 

1 1Observe that is the derivative of , so differentiating the power series for f(x) gives (1−x)2 1−x 

∞X 
n−1f 0(x) = 

1 
= nx . 

(1 − x)2 
n=1 

Since the radius of convergence for the original series was 1, it remains 1 now. To get the last power series, 
we substitute x2 everywhere we see an x in the series of f 0(x): 

∞ ∞
1 X 

2)n−1 
X 

2n−2f 0(x 2) = = n(x = nx . 
(1 − x2)2 

n=1 n=1 

This will converge if |x2| < 1, so |x| < 1, and the radius is still 1. 
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